

Lecture Notes in Computer Science 3573
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Sandro Etalle (Ed.)

Logic Based
Program Synthesis
and Transformation

14th International Symposium, LOPSTR 2004
Verona, Italy, August 26 – 28, 2004
Revised Selected Papers

13

Volume Editor

Sandro Etalle
University of Twente
Distributed and Embedded System Group
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: s.etalle@utwente.nl

Library of Congress Control Number: 2005927904

CR Subject Classification (1998): F.3.1, D.1.1, D.1.6, D.2.4, I.2.2, F.4.1

ISSN 0302-9743
ISBN-10 3-540-26655-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26655-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11506676 06/3142 5 4 3 2 1 0

Preface

This volume contains a selection of the papers presented at LOPSTR 2004, the
14th International Symposium on Logic-Based Program Synthesis and Transfor-
mation.

The aim of the LOPSTR series is to stimulate and promote international
research and collaboration on logic-based program development. The workshop
is open to contributions in logic-based program development in any language
paradigm. This year, LOPSTR put extra emphasis on the field of verification by
incorporating the VCL (Verification in Computational Logic) workshop.

LOPSTR 2004 took place in Verona, Italy, and was co-located with the In-
ternational Static Analysis Symposium (SAS 2004), the ACM SIGPLAN 2004
Workshop on Partial Evaluation and Semantics Based Program Manipulation
(PEPM 2004), and the 6th ACM-SIGPLAN International Conference on Prin-
ciples and Practice of Declarative Programming (PPDP 2004).

Past workshops were held in Manchester (UK), Louvain-la-Neuve (Belgium),
Pisa (Italy), Arnhem (the Netherlands), Stockholm (Sweden), Leuven (Belgium),
Venice (Italy), London (UK), Paphos (Cyprus), Madrid (Spain) and Uppsala
(Sweden). Since 1994 the proceedings have been published in the Springer LNCS
series.

We received 23 full paper submissions (1 from Australia, 3 from the US, 4
from Asia, 3 from Africa, 11 from Europe1, and one Spain–US cooperation), and
11 extended abstract submissions (1 from Israel, 1 from Africa, one US–Spain
cooperation, and the others were from Europe2). We accepted for presentation 11
full papers and 8 extended abstracts. This volume contains a selection consisting
of the 11 full papers and of the full version of 6 of the extended abstracts.

I would like to express my gratitude to the authors of the papers, the re-
viewers, and in particular to the members of the Program Committee, for their
invaluable help.

My warmest thanks also go to Roberto Giacobazzi – who was extremely
generous and efficient in organizing the event – and to the members of the
Organizing Committee. In particular Fausto Spoto and Samir Genaim made
my life very easy by managing the webserver, also during holidays. Finally, I
would like to thank Eugenio Moggi and the chairs of the other events (David
Scott Warren of PPDP, Nevin Heintze and Peter Seztof of PEPM, and Roberto
Giacobazzi of SAS) for the pleasant and stimulating cooperation.

March 2005 Sandro Etalle

1 Of which 2 from Spain, 2 from Germany, 2 from Denmark, and the others were from
other countries or were cooperation between different countries.

2 All extended abstract submissions came from different countries or from combina-
tions of countries.

Organization

Program Chair

Sandro Etalle University of Twente, The Netherlands.

Program Committee

Gilles Barthe INRIA Sophia-Antipolis, France
Annalisa Bossi University of Venice, Italy
Maurice Bruynooghe University of Leuven, Belgium
Francisco Bueno Technical University of Madrid, Spain
Giorgio Delzanno University of Genova, Italy
Tom Ellman Vassar College, USA
Sandro Etalle University of Twente, The Netherlands
Norbert Fuchs University of Zürich, Switzerland
Gopal Gupta University of Texas at Dallas, USA
Patricia M. Hill University of Leeds, UK
Kung-Kiu Lau University of Manchester, UK
Fabio Martinelli IIT-CNR, Italy
Alberto Pettorossi University of Rome “Tor Vergata”, Italy
Andreas Podelski Max Planck Institute for Computer Science,

Germany
C.R. Ramakrishnan SUNY at Stony Brook, USA
Abhik Roychoudhury National University of Singapore, Singapore
Wim Vanhoof University of Namur, Belgium
Germán Vidal Technical University of Valencia, Spain

Additional Referees

Chiara Braghin Nicoletta Cocco Maurizio Gabbrielli
Irina Mariuca Gheorghita Dilian Gurov Florian Kammueller
Andrew Ireland Gebriele Lenzini Ajay Mallya
Alberto Momigliano Bert van Nuffelen Claudio Ochoa
Mario Ornaghi Vajirapan Panumong Maurizio Proietti
Alessandro Provetti Femke van Raamsdonk Tamara Rezk
Sabina Rossi Andrey Rybalchenko Luke Simon
Josep Silva Jan-Georg Smaus Joost Vennekens

Sponsoring Institution

The Association for Logic Programming
University of Verona

Table of Contents

Verification and Analysis

Searching Semantically Equivalent Code Fragments in Logic Programs
Wim Vanhoof . 1

Determinacy Analysis for Logic Programs Using Mode and Type
Information

P. López-Garćıa, F. Bueno, M. Hermenegildo . 19

Mechanical Verification of Automatic Synthesis of Fault-Tolerant
Programs

Sandeep S. Kulkarni, Borzoo Bonakdarpour, Ali Ebnenasir 36

Fully Automatic Binding-Time Analysis for Prolog
Stephen-John Craig, John P. Gallagher, Michael Leuschel,
Kim S. Henriksen . 53

Theory and Security

Logical Mobility and Locality Types
Jonathan Moody . 69

Unwinding Conditions for Security in Imperative Languages
Annalisa Bossi, Carla Piazza, Sabina Rossi . 85

Natural Rewriting for General Term Rewriting Systems
Santiago Escobar, José Meseguer, Prasanna Thati 101

Transformations

Negation Elimination for Finite PCFGs
Taisuke Sato, Yoshitaka Kameya . 117

Specialization of Concurrent Guarded Multi-set Transformation Rules
Thom Frühwirth . 133

Efficient Local Unfolding with Ancestor Stacks for Full Prolog
Germán Puebla, Elvira Albert, Manuel Hermenegildo 149

VIII Table of Contents

Program Development

Schema-Guided Synthesis of Imperative Programs by Constraint Solving
Michael A. Colón . 166

Run-Time Profiling of Functional Logic Programs
B. Brassel, M. Hanus, F. Huch, J. Silva, G. Vidal 182

Constructive Specifications for Compositional Units
Kung-Kiu Lau, Alberto Momigliano, Mario Ornaghi 198

Termination

Input-Termination of Logic Programs
M.R.K. Krishna Rao . 215

On Termination of Binary CLP Programs
Alexander Serebrenik, Fred Mesnard . 231

Program Development and Synthesis

From Natural Semantics to Abstract Machines
Mads Sig Ager . 245

Graph-Based Proof Counting and Enumeration with Applications for
Program Fragment Synthesis

J.B. Wells, Boris Yakobowski . 262

Author Index . 279

Searching Semantically Equivalent Code
Fragments in Logic Programs

Wim Vanhoof

Institut d’Informatique,
University of Namur, Belgium

wva@info.fundp.ac.be

Abstract. In this work, we devise an analysis that searches for seman-
tically equivalent code fragments within a given logic program. The pres-
ence of duplicated code (or functionality) is a primary indication that
the design of the program can be improved by performing a so-called
refactoring transformation. Within the framework of our analysis, we for-
mally characterize three situations of duplicated functionality and their
associated refactorings: the extraction of a duplicated goal into a new
predicate, the removal of equivalent predicates and the generalization of
two predicates into a higher-order predicate. The resulting analysis de-
tects in a completely automatic way what program fragments are suitable
candidates for the considered refactoring transformations.

1 Introduction

Program refactoring is the process of systematically changing the structure of a
program without changing its semantics. The goal of refactoring is to improve
the design of the code after it has been written, in order to facilitate maintenance
(including further development) of the software. Emerged from the OO and XP
communities [5], program refactoring has recently gained attention in the fields
of functional [8] and logic programming [14]. Within the software engineering
community, the process of refactoring is considered important and has been
identified as central to software development and maintenance [6, 5].

At the basis of the refactoring process is a catalogue of available source-to-
source transformations – the so-called refactorings. For each refactoring, a set
of conditions is specified under which the transformation is correct in the sense
that it preserves the semantics of the program. The activity of refactoring con-
sists then in repeatedly searching through the source code, looking for a code
fragment of which the design could be improved by a particular refactoring from
the catalogue. The particular refactoring is subsequently applied, and the whole
process is repeated. Although each transformation can have an impact (posi-
tive or negative) on the performance of the program, the primary aim of each
transformation is to improve the readability and maintainability of the code. In
the context of logic programming, which we pursue in this paper, typical exam-
ples of refactorings are the elimination of unreachable predicates (i.e. dead code

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 1–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 W. Vanhoof

elimination), removing duplicated predicates, adding or (re)moving predicate ar-
guments, extracting new predicates etc. See [5] for an overview of refactoring in
general and [14] for an overview of available refactorings in logic programming.

Refactoring is basically a manual process that is performed by the program-
mer. Nevertheless, the need for automation is recognized [5, 8, 11] due to the
time-consuming and error-prone nature of the refactoring activity. Automation
(or at least partial automation) can be achieved on several levels. On one level,
we can design tools that aid the developer with performing a particular refac-
toring on a selected fragment of source code (including the verification of the
correctness conditions). An example of such a tool is the Refactoring Browser [11]
that was developed for Smalltalk. On another level, one could employ program
analysis tools to aid the developer with identifying in the program opportunities
for refactoring, as such (partially) automating the search for which transforma-
tions to apply to which code fragments. It is at the latter level that our current
work is situated.

Identifying where to perform (a particular) refactoring is in itself a non-trivial
and creative process. Nevertheless, the primary indication for when to perform
refactoring [5] is the presence of duplicated code (or better: duplicated function-
ality). Let us, by means of introduction, consider a number of typical situations
that illustrate how functionality can be duplicated in a logic program. First, goals
can be duplicated within a program. Assume for example we have a program in
which we encounter, in two different clauses (a) and (b) the following subgoals:

...

X = (A-B),

reverse(A,Ar),

reverse(B,Br),

...

...

Data = (Left-Right),

reverse(Right,RR),

reverse(Left,LR),

...

(a) (b)

Although the two goals are textually different, it is obvious that they both
are meant to perform the same computation, i.e. they apply the reverse/2
predicate to both elements of a given pair. A typical refactoring that removes
this kind of goal duplication is predicate extraction: the duplicated goal is made
the body of a newly created predicate and each occurrence of the goal is replaced
by a call to the new predicate. The above code could for example be transformed
into

...

retrieve and reverse(X,Ar,Br),

...

...

retrieve and reverse(Data,LR,RR),

...

(a) (b)

in combination with the newly defined predicate

retrieve and reverse((A-B),AR,BR):- reverse(A,AR), reverse(B,BR).

A second, more extreme case of code duplication is the presence in the pro-
gram of two or more predicates that essentially specify the same relation, as in
the following example.

Searching Semantically Equivalent Code Fragments in Logic Programs 3

append([],L,L).

append([X|Xs],Y,[X|Zs]):- append(Xs,Y,Zs).

concat(L,[],L).

concat([E|Zs],[E|Es],Y):-concat(Zs,Es,Y).

Intuitively it is clear that the two predicates define the same relation, where
one argument is the concatenation of the two others. The duplication can be
removed by the remove duplicate predicates refactoring that consists in deleting
one of both predicate definitions and replacing each call to it by a call to the
remaining predicate. In the example above, one could delete the definition of
concat/3 and subsequently replace every call concat(t1,t2,t3) with a call
append(t2,t3,t1).

As a third case, we consider predicates that do not implement the same
relation, but nevertheless share a common functionality. Consider as a typical
example the following definitions.

rev all([],[]).

rev all([X|Xs],[Y|Ys]):- reverse(X,Y), rev all(Xs,Ys).

add1 and sqr([],[]).

add1 and sqr([X|Xs],[Y|Ys]):- N is X + 1, Y is N*N, add1 and sqr(Xs,Ys).

Such definitions implement two different relations: rev all reverses all the
elements of an input list, while add1 and sqr transforms each element x of an
input list into (x+1)2. They nevertheless have a common core and if we assume a
language with higher-order capabilities (as for example in [15]), one can extract
the common functionality into a map/3 predicate

map([], ,[]).

map([X|Xs],P,[Y|Ys]):- P(X,Y), map(Xs,Ys).

and replace every call of the form rev all(t1,t2) by a call

map(t1,lambda([X,Y],reverse(X,Y)),t2)

and every call add1 and sqr(t3,t4) by

map(t3,lambda([X,Y],(N is X+1, Y is N*N)),t4).

In this work, we define a simple yet powerful analysis that basically computes
for a given definite logic program sets of code fragments that are “semantically
equivalent”. We use the notion of semantic equivalence to denote different code
fragments that implement the same functionality in the sense outlined above.
Note that the analysis is nontrivial and goes further than a simple syntactic
comparison of goals: as shown by the examples, it needs to deal with renamed
variables, differently ordered literals, renamed predicates and permutated predi-
cate arguments. We furthermore characterize each of the above illustrated cases
of duplicated functionality within the formal framework of our analysis. As a
result, we obtain an analysis that identifies in a straightforward way those code

4 W. Vanhoof

fragments in a program that are suitable candidates for refactoring using one of
the considered transformations: the extraction of goals into a new predicate, the
removal of duplicated predicates and the introduction of higher-order predicates.
The analysis is completely automatic and is, to the best of our knowledge, the
first to support the programmer in finding candidate code fragments for this
kind of refactorings.

2 Preliminaries

In what follows, we assume the reader to be familiar with the basic logic pro-
gramming concepts as they are found, for example, in [1, 9]. We restrict ourselves
to definite programs. In particular, we consider a program to be defined as a set
of clauses of the form H ← B1, . . . , Bn with H an atom and B1, . . . , Bn a
conjunction of atoms. We assume that clauses are in a normal form such that
each atom is of the form: p(X1, . . . , Xn), X = Y or X = f(X1, . . . , Xn) (with
X,Y,X1, . . . , Xn different variables). Moreover, in this normal form every clause
defining a predicate p/n has the same head atom p(X1, . . . , Xn). Given a pred-
icate p/n, we denote with head(p/n) the (identical) head atom of every clause
that defines p/n. Given a particular clause c, we denote with body(c) the con-
junction of atoms that constitutes the body of the clause. For any syntactic
entity E (be it a term, atom, goal or clause), we use vars(E) to denote the set
of variables occurring in E. As usual, a substitution is defined as a finite map-
ping from distinct variables to terms. A variable renaming is a bijective mapping
from variables onto variables. For any mapping f : X �→ Y , we denote with f|D
the restriction of the mapping to the domain D ⊆ X. The inverse of any map-
ping f is denoted by f−1. We use the notation {x1/y1, . . . , xn/yn} to explicitly
represent a mapping f : X �→ Y with dom(f) = {x1, . . . , xn} and yi = f(xi) ∀i.

We define the meaning of a program P by means of its fixed point semantics
F(P) which was introduced in [4]. Let HV denote the non-ground Herbrand
Base; that is the set of all atoms modulo variance. For a given program P , F(P)
is then defined as the least fixed point of a non-ground TP operator

TP (I) =

⎧⎨
⎩Hθ

∃H ← B1, . . . , Bn ∈ P,
∃A1, . . . , An renamed apart variants of atoms in I,
∃θ = mgu((A1, . . . , An), (B1, . . . , Bn))

⎫⎬
⎭

for I ⊆ HV . The fixed point semantics of a program P is equivalent with the
operational semantics [4, 2], in the sense that it characterizes the set of computed
answer substitutions. Indeed, the set of computed answers associated to a goal
(B1, . . . , Bn) equals the set

{θ | (A1, . . . , An) ∈ F(P) and θ = mgu((A1, . . . , An), (B1, . . . , Bn))}.

Note that by choosing the fixed point semantics to define the meaning of a
program, we make abstraction of a concrete search strategy and selection rule.

In what follows we assume that clauses are numbered. We furthermore assume
that every atom in the program text is identified by a unique program point which

Searching Semantically Equivalent Code Fragments in Logic Programs 5

we will represent by a pair of natural numbers (k, i) where k denotes the number
of the clause of the atom and i denotes the position of the atom within the clause
body. We define a code fragment as a set of program points occurring within a
single clause. The size of a code fragment ϕ is defined as the number of program
points occurring in ϕ. Throughout the text, we will represent a code fragment
symbolically by using the Greek letter ϕ. If B denotes an atom, we will often
use B ∈ ϕ as shorthand notation for “let B be the atom associated to a program
point a ∈ ϕ”. Likewise, we will often leave the program points implicit and
simply regard a code fragment ϕ as a (multi)set of atoms ϕ = {B1, . . . , Bn}.
Example 1. Reconsider the definitions of append/3 and concat/3 from the in-
troduction, but now in normal form.

(1) append(X,Y,Z):- X = [], Z = Y

(2) append(X,Y,Z):- X = [Xe|Xs], Z = [Xe|Zs], append(Xs,Y,Zs).

(3) concat(A,B,C):- B = [], A = C.

(4) concat(A,B,C):- A = [Be|As], B = [Be|Bs], concat(As,Bs,C).

If we assume that within a clause atoms are numbered from 1, the code
fragment ϕ1 = {(1, 1), (1, 2)} denotes the set of atoms {X = [], Z = Y } in the
first clause, whereas the code fragment ϕ2 = {(4, 1), (4, 3)} denotes the set of
atoms {A = [Be|As], concat(As,Bs,C)} in clause (4). As shorthand notation,
we write ϕ1 = {X = [], Z = Y } and ϕ2 = {A = [Be|As], concat(As,Bs,C)}.

A code fragment is a syntactic entity, referring to a subset of the body atoms
in a clause in the program P . Nevertheless, a code fragment can be interpreted
as a goal, with an associated set of computed answers in F(P), by considering
the set of atoms as if it was a conjunction. Consequently, we will define two code
fragments to be semantically equivalent if and only if their associated sets of
computed answers are identical under a variable renaming. Formally:

Definition 1. Let P be a definite program. Let {B1, . . . , Bn} and {B′
1, . . . , B

′
n}

be two sets of atoms corresponding to two code fragments ϕ and ϕ′ in P . We say
that ϕ and ϕ′ are semantically equivalent if and only if there exists a variable
renaming ρ : vars({B1, . . . , Bn}) �→ vars({B′

1, . . . , B
′
n}) such that

{A1, . . . , An} ⊆ F(P) with θ = mgu((A1, . . . , An), (B1, . . . , Bn))

if and only if

{A′
1, . . . , A

′
n} ⊆ F(P) with θ′ = mgu((A′

1, . . . , A
′
n), (B′

1, . . . , B
′
n))

with for each x ∈ vars({B1, . . . , Bn}) : ρ(θ(x)) = θ′(ρ(x)) and for each y ∈
vars({B′

1, . . . , B
′
n}) : ρ−1(θ′(y)) = θ(ρ−1(y)).

Conforming with the use of the fixed point semantics, the definition of se-
mantic equivalence abstracts from a particular execution strategy: for two code
fragments to be semantically equivalent, it suffices that the set of computed an-
swers associated to one fragment is a renaming of the other. The fact that we
formulate semantic equivalence at the level of the computed answers allows us to
consider calls to different predicates as semantically equivalent, as the following
example demonstrates.

6 W. Vanhoof

Example 2. Consider the definitions of append/3 and concat/3 from before.
The code fragments ϕ = {append(X1, X2, X3)} and ϕ′ = {concat(Y1, Y2, Y3)}
are semantically equivalent due to the existence of the variable renaming ρ :
vars(ϕ) �→ vars(ϕ′) defined as {(X1, Y2), (X2, Y3), (X3, Y1)}. Indeed, one can
verify that for any atom append(X1, X2, X3){X1/t1, X2/t2, X3/t3} ∈ F(P),
there exists an atom concat(Y1, Y2, Y3){Y1/t

′
1, Y2/t

′
2, Y3/t

′
3} ∈ F(P) such that

ρ(t1) = t′2, ρ(t2) = t′3 and ρ(t3) = t′1 and that likewise ρ−1(t′1) = t3, ρ−1(t′2) = t1
and ρ−1(t′3) = t2.

3 Computing Semantically Equivalent Code Fragments

In this section we discuss how one can compute, for a program P , an approx-
imation of the sets of semantically equivalent code fragments in P . It follows
immediately from Definition 1 that if the set of atoms associated to a code frag-
ment ϕ is a renaming of the set of atoms associated to another code fragment
ϕ′, then the two code fragments are semantically equivalent. This observation
motivates the definition of a k-isomorphism as follows.

Definition 2. Let c and c′ be clauses in P and k ∈ IN. A k-isomorphism (be-
tween c and c′) is a 4-tuple 〈ϕ,ϕ′, β, ρ〉 where ϕ is a code fragment of size k
in c, ϕ′ a code fragment of size k in c′ and ρ : vars(ϕ) �→ vars(ϕ′) a variable
renaming and β : ϕ �→ ϕ′ a bijective mapping such that:

– ∀A ∈ ϕ : ρ(A) = β(A), and
– ∀A′ ∈ ϕ′ : ρ−1(A′) = β−1(A′).

Informally, a k-isomorphism defines a unique mapping between two sets of
k atoms such that one set is a renaming of the other. Whenever the size of a
k-isomorphism has no importance, we will drop the k and simply talk about an
isomorphism. We also say that the code fragments ϕ and ϕ′ are (β,ρ)-isomorphic
(or simply isomorphic) if and only if there exists an isomorphism 〈ϕ,ϕ′, β, ρ〉.
The set of all isomorphisms is denoted by Iso.

Example 3. Consider the definitions of append/3 and concat/3 as in Example 1.
Let ϕ = {(2, 1), (2, 2)} (i.e. the code fragment comprising the set of atoms {X =
[Xe|Xs], Z = [Xe|Zs]}) in clause (2) and ϕ′ = {(4, 1), (4, 2)} (i.e. comprising
the set of atoms {A = [Be|As], B = [Be|Bs]}) in clause (4). Then there exist
two 2-isomorphisms between ϕ and ϕ′, namely 〈ϕ,ϕ′, β1, ρ1〉 and 〈ϕ,ϕ′, β2, ρ2〉
with

β1 = {(2, 1)/(4, 1), (2, 2)/(4, 2)}
ρ1 = {X/A,Xe/Be,Xs/As, Z/B,Zs/Bs}

and
β2 = {(2, 1)/(4, 2), (2, 2)/(4, 1)}
ρ2 = {X/B,Xe/Be,Xs/Bs, Z/A,Zs/As}

Hence, the first isomorphism in this example maps the first atom of clause (2)
onto the first atom of clause (4), whereas the second isomorphism maps the first
atom of clause (2) onto the second atom of clause (4), etc.

Searching Semantically Equivalent Code Fragments in Logic Programs 7

We introduce the following notion to express that there exists a partial iso-
morphism between two code fragments.

Definition 3. Given two code fragments ϕ and ϕ′, we say that ϕ and ϕ′ are(β, ρ)-
isomorphic modulo (ϕm, ϕ′

m) if and only if there exists an isomorphism 〈(ϕ \
ϕm), (ϕ′ \ ϕ′

m), β, ρ〉.

Example 4. Reconsider the definitions of append/3 and concat/3 as in Exam-
ple 1. Let ϕ and ϕ′ denote respectively the set of all body atoms of clauses (2)
and (4), that is ϕ = {(2, 1), (2, 2), (2, 3)} and ϕ′ = {(4, 1), (4, 2), (4, 3)}. If we
take β1 and ρ1 as in Example 3, we have that ϕ and ϕ′ are (β1, ρ1)-isomorphic
modulo ({(2, 3)}, {(4, 3)}).

Note that it follows from Definitions 2 and 3 that in an expression of the
form “ϕ and ϕ′ are isomorphic modulo (ϕm, ϕ′

m)” the isomorphic parts, i.e.
ϕ \ ϕm and ϕ′ \ ϕ′

m, are of equal size but the non-isomorphic parts can have
different sizes. An important observation is that any k-isomorphism, for a value
k > 1, is constructed from smaller isomorphisms. The following definition states
the conditions under which two isomorphisms can be combined into a single
isomorphism:

Definition 4. Let c and c′ denote two clauses in a definite program P , and let
〈ϕ1, ϕ

′
1, β1, ρ1〉 and 〈ϕ2, ϕ

′
2, β2, ρ2〉 denote respectively a k-isomorphism and an

l-isomorphism between c and c′. If

β1 ∪ β2 : ϕ1 ∪ ϕ2 �→ ϕ′
1 ∪ ϕ′

2

is a bijective mapping and

ρ1 ∪ ρ2 : vars(ϕ1 ∪ ϕ2) �→ vars(ϕ′
1 ∪ ϕ′

2)

a variable renaming, then the two isomorphisms are said to be compatible and
there exists a single m-isomorphism 〈ϕ1 ∪ϕ2, ϕ

′
1 ∪ϕ′

2, β1 ∪β2, ρ1 ∪ ρ2〉 with m =
k+ l−#(ϕ1∩ϕ2). Otherwise the two isomorphisms are said to be incompatible.

Intuitively, two isomorphisms between clauses c and c′ are compatible if the
following holds: 1) if an atom in body(c) is mapped by both isomorphisms, it is
mapped onto the same atom in body(c′), and 2) both variable renamings can be
combined into a single variable renaming.

Example 5. Reconsider the definitions of append/3 and concat/3 as in Exam-
ple 1. The following two 1-isomorphisms

I1 = 〈{(2, 1)}, {(4, 1)}, {(2, 1)/(4, 1)}, {X/A,Xe/Be,Xs/As}〉
I2 = 〈{(2, 2)}, {(4, 2)}, {(2, 2)/(4, 2)}, {Z/B,Xe/Be, Zs/Bs}〉

(mapping, respectively, the first atom in clause (2) onto the first atom in clause
(4) and the second atom in clause (2) onto the second atom in clause (4)) are
compatible. Combining them results in the isomorphism 〈ϕ,ϕ′, β1, ρ1〉 from Ex-
ample 3.

8 W. Vanhoof

Example 6. Suppose we have clauses c and c′ with the sets of atoms {X =
[Xe|Xs], Xs = [Xe|Y s]} ⊆ body(c) and {A = [Ae|As], B = [Ae|Bs]} ⊆ body(c′).
Then the 1-isomorphisms mapping respectively X = [Xe|Xs] onto A = [Ae|As]
and Xs = [Xe|Y s] onto B = [Ae|Bs] are incompatible since their renamings
cannot be combined due to the conflict between Xs/As and Xs/B.

Definition 4 suggests a way of constructing (k-)isomorphisms. Indeed, any
k-isomorphism between c and c′ can be constructed by combining k compatible
1-isomorphisms between c and c′. Hence, one could first construct the set of
1-isomorphisms, and then repeatedly combine these in order to construct larger
isomorphisms. Computing the set of all 1-isomorphisms between clauses c and
c′ is straightforward and of complexity O(n2) with n the total number of atoms
in c and c′. Although exhaustively combining the 1-isomorphisms is a complete
method (and thus guaranteed to find all isomorphisms that exist between a pair
of clauses), it requires to consider every subset of 1-isomorphisms and hence is
of exponential complexity (O(2m) with m the number of 1-isomorphisms be-
tween c and c′). However, we can easily compute a partitioning of the set of
1-isomorphisms between c and c′ into sets of compatible 1-isomorphisms with
the following characteristic: all 1-isomorphisms within a single set are compatible
(hence they can be combined into a single isomorphism) but the isomorphisms
resulting from different sets are mutually incompatible. The following algorithm
computes such a partitioning for given clauses c and c′ and has a worst-case
complexity of O(m2) with m the number of 1-isomorphisms involved.

Algorithm 3.1
Input: clauses c and c′

Output: a set of mutually incompatible isomorphisms1

Let S0 be the set of all 1-isomorphisms between c and c′.
return combine(S0)
where combine:P(Iso) �→ P(P(Iso)) is defined as follows:

combine(S) = select γ ∈ S
let C = {γ′ | γ′ ∈ (S \ {γ}) and γ′ incompatible with γ}
return combine(C) ∪ { {γ} ∪ E | E ∈ combine(S \ ({γ} ∪ C)}

The algorithm proceeds by selecting a 1-isomorphism γ in S and partitioning
the remaining 1-isomorphisms into those incompatible with γ (the set C) and
those compatible with γ (the set S \ C). Each of these sets is then recursively
partitioned and γ is added to each element in the partitioning of (S \ C). Note
that the algorithm is non-deterministic and does by no means try to find a
partitioning that includes the best (or the largest) isomorphism. It nevertheless
guarantees that the resulting isomorphisms are mutually incompatible. Hence,
they cannot be combined into a larger isomorphism and thus we can hope that

1 Technically, the algorithm outputs sets of compatible 1-isomorphisms that can hence
be combined into a single isomorphism. The resulting isomorphisms are however
mutually incompatible.

Searching Semantically Equivalent Code Fragments in Logic Programs 9

the resulting partition contains an isomorphism that is “sufficiently large” for
the purpose at hand. Moreover, the algorithm can be steered towards “large”
solutions by refining the “select γ ∈ S operation, for example making sure that a
γ is selected with a minimal number of incompatibilities (worst-case complexity
O(m3)).

4 Finding Duplicated Functionality

We will now proceed with characterizing within the framework of our analysis
the three common cases of functionality duplication that we encountered in the
introduction. Doing so renders each case recognizable by automatic analysis.

4.1 Case 1: Duplicated Goals

The existence of an isomorphism between two code fragments renders the code
fragments semantically equivalent and hence candidates for extraction into a new
predicate. Recall however that a code fragment identifies an arbitrary subset of
the body atoms of a clause. Hence for a code fragment to be replaceable by a
predicate call, the corresponding atoms must be “connected” in the sense that
there should be no mutual data flow dependency between an atom in the code
fragment and an atom outside the code fragment.
Definition 5. Let DFP be the dataflow graph of a program P , that is DFP is a
graph (V,E) with V the set of program points defined in P and E the set of edges
defined as E = {(v, v′)|v, v′ ∈ V and the atoms identified by v and v′ belong to
a single clause and share a variable}. A code fragment ϕ is connected if and
only if ∀a, a′ ∈ ϕ, it holds that for each path 〈a, b1, . . . , bn, a

′〉 ∈ DFP : bi ∈ ϕ,
∀i ∈ {1, . . . , n}.
Example 7. Consider the conjunction

...,X = [A|As], As = [B|Bs], plus(A,B,Sum),...

that is meant to compute the sum of the first two elements of a list in X.
The code fragment comprising only the first and third atom , i.e. ϕ = {X =
[A|As], plus(A,B, Sum)}, is not connected since there is a mutual data flow de-
pendency between ϕ and the remaining atom As = [B|Bs] (due to the variables
As and B that are both shared by this atom and ϕ).

If a code fragment ϕ is connected, it can be replaced by a call to a new
predicate that is defined by a single clause with the body ϕ. The arguments
passed to the newly defined predicate are all variables that are shared by ϕ and
some atom outside ϕ. We will denote this set of variables by exvars(ϕ).

Definition 6. Let ϕ be a code fragment in a program P . Then exvars(ϕ) =
vars(ϕ) \ {x | x is shared by ϕ and some atom A ∈ ϕ belonging to the same
clause as ϕ}.

In general, a code fragment can be duplicated several times in a program.
We introduce the notion of an extraction to denote a set of non-overlapping
isomorphic connected code fragments.

10 W. Vanhoof

Definition 7. A k-extraction E is a set of connected code fragments of size k
with for all ϕ,ϕ′ ∈ E:
1. ϕ is k-isomorphic to ϕ′, and
2. ϕ = ϕ′ ⇒ ϕ ∩ ϕ′ = ∅.

As with the isomorphisms, we will drop the k in case the size of the code frag-
ments in the extraction is not important. Since the code fragments in an ex-
traction are connected, mutually isomorphic and no two code fragments overlap,
they can all be replaced by a call to the same (new) predicate.

Remains to discuss how one can actually compute an extraction. First, com-
puting all extractions in a program P is again computationally unfeasible. How-
ever, one can compute an extraction in a straightforward way, starting from a
given set of isomorphisms.

Algorithm 4.2
Input: a program P and a mapping μ : Clause× Clause �→ P(Iso)
Output: a set of extractions S
Let S ← ∅
repeat

select two clauses c and c′

select an isomorphism 〈ϕ1, ϕ2, β, ρ〉 ∈ μ(c, c′)
if there exists an extraction E ∈ S and a code fragment ϕ ∈ E

such that #(ϕ1 ∩ ϕ) ≥ ε for some ε ∈ IN
then

downsize each code fragment in E such that it is isomorphic with ϕ ∩ ϕ1

add β|ϕ1∩ϕ
(ϕ1) to E

else
let S ← S ∪ { {ϕ1, ϕ2} }

until all combinations of clauses c,c′ have been selected.

Algorithm 4.2 constructs a set of extractions from a mapping between clause
pairs and isomorphisms as for example the one computed by Algorithm 3.1.
Starting from an empty set of extractions, the algorithm repeatedly selects an
isomorphism 〈ϕ1, ϕ2, β, ρ〉 from the mapping, and checks whether one of the
involved code fragments, say ϕ1, sufficiently overlaps with a code fragment (ϕ)
in one of the extractions (E) under construction. If this is the case, the code
fragments in E are all downsized in such a way that they remain mutually
isomorphic with ϕ ∩ ϕ1 and subsequently the code fragment β|ϕ∩ϕ1(ϕ1) ⊆ ϕ2

(i.e. the accordingly downsized code fragment ϕ2 from the selected isomorphism)
is added to E. If it is not the case, a new extraction is created containing the
two code fragments {ϕ1, ϕ2}.

Again, the algorithm is non-deterministic. The quality of the resulting ex-
traction is determined by the mapping μ and the particular isomorphism that is
selected from the set μ(c, c′). It should be noted that producing “high quality”
extraction is a non-trivial task, in particular since the definition of “high quality”
may depend on the application at hand. Characteristics that are likely be taken
into account are the number of code fragments in the extraction, the size of the

Searching Semantically Equivalent Code Fragments in Logic Programs 11

code fragments in the extraction and the number of non-overlapping extractions
found. Developing heuristics to search for extractions is an interesting topic for
further research.

4.2 Case 2: Duplicated Relations

As a second case, we consider the detection of duplicated relations. Relations
p/n and q/n are duplicates if and only if a call of the form p(X1, . . . , Xn) is
semantically equivalent to a call q(Y1, . . . , Yn). From Definition 1, it follows that
a sufficient condition for two predicates to be equivalent is that their definitions
are isomorphic, modulo a permutation of their arguments.

Definition 8. Given two predicates p/n and q/n, we define an argument permu-
tation between p/n and q/n as a bijective mapping π : {1, . . . , n} �→ {1, . . . , n}.
Note that an argument permutation π between p/n and q/n induces a unique
variable renaming from the arguments of a call Cp = p(X1, . . . , Xn) to the
arguments of a call Cq = q(Y1, . . . , Yn), which we will denote by renπ(Cp, Cq).
Formally, this renaming is defined by

renπ(Cp, Cq) = {X1/Yπ(1), . . . , Xn/Yπ(n)}

for Cp = p(X1, . . . , Xn) and Cq = q(Y1, . . . , Yn).

Example 8. Consider the argument permutation π : {(1, 2), (2, 3), (3, 1)} be-
tween append/3 and concat/3 as they are defined before. Informally, this map-
ping maps the first two arguments of append to the last two arguments of concat
and the third argument of append to the first argument of concat. The induced
renaming from a call append(X,Y,Z) to a call concat(A,B,C) is then

renπ(append(X,Y,Z), concat(A,B,C)) = {X/B, Y/C,Z/A}.

Our definition of isomorphism basically defines two code fragments as iso-
morphic if and only if one is a renaming of the other. Consequently, using this
definition alone we are unable to conclude the definition of two recursive pred-
icates to be isomorphic. To deal with recursiveness, we introduce the notion of
a pseudo-isomorphism, that associates a set of recursive calls in a clause with a
set of recursive calls in another clause.

Definition 9. Let c be a clause in the definition of a predicate p/n and c′ a
clause in the definition of a predicate q/n and k ∈ IN. A pseudo k-isomorphism
(between c and c′) is a triplet 〈ϕ1, ϕ2, β〉 where ϕ1 is a code fragment of size k in
c such that every atom in ϕ1 is a recursive call (to p/n) and ϕ2 a code fragment
of size k in c′ such that every atom in ϕ2 is a recursive call (to q/n), p = q and
β : ϕ1 �→ ϕ2is a bijective mapping.

Like with regular k-isomorphisms, we say that two code fragments ϕ1 and
ϕ2 are β-pseudo isomorphic (or pseudo-isomorphic w.r.t. β) iff 〈ϕ1, ϕ2, β〉 is a
pseudo isomorphism. From Definition 9, it follows that there exists a pseudo
1-isomorphism between every pair of recursive calls. Note that a pseudo k-
isomorphism can only exist between two clauses that each contain at least k

12 W. Vanhoof

recursive calls. Also note that, contrary to a regular isomorphism, a pseudo iso-
morphism only provides a mapping between the individual recursive calls in the
two clauses, it does not require the atoms to be renamings.
Example 9. Reconsider the definitions of append/3 and concat/3 from exam-
ple 1, in addition with the following definition for a predicate funnyappend/3
that is basically equal to append except for the recursive call in which the first
two arguments are exchanged (from [3]).

(5) funnyappend(D,E,F):- D = [], F = E.

(6) funnyappend(D,E,F):- D = [De|Ds], F=[De|Fs], funnyappend(E,Ds,Fs).

We have the following pseudo 1-isomorphisms:

〈{(2, 3)}, {4, 3)}, β1〉 with β1 = {(2, 3)/(4, 3)}
〈{(2, 3)}, {6, 3)}, β2〉 with β2 = {(2, 3)/(6, 3)}
〈{(4, 3)}, {6, 3)}, β3〉 with β3 = {(4, 3)/(6, 3)}

mapping the recursive calls between, respectively, append and concat, append
and funnyappend, and concat and funnyappend.

Note that the concepts of isomorphism and pseudo-isomorphism are orthog-
onal, in the sense that two program points belonging to different predicates
cannot be both isomorphic and pseudo isomorphic. We combine the notions of
isomorphism and pseudo isomorphism to define an isomorphism between two
predicate definitions, which is a sufficient condition so that two predicates can
be regarded as duplicates.

Definition 10. Given two predicates p/n and q/n that are defined respectively
by the sets of clauses {c1, . . . , cm} and {c′1, . . . , c′m}. Let Hp = head(p/n) and
Hq = head(q/n). The predicate definitions for p/n and q/n are isomorphic if
there exists a bijective mapping κ : {c1, . . . , cm} �→ {c′1, . . . , c′m} and an argument
permutation π between p/n and q/n such that for each pair of corresponding
clauses ci and κ(ci) holds that

1. body(ci) and body(κ(ci)) are (βi, ρi)-isomorphic modulo (ϕi, ϕ
′
i)

2. ϕi and ϕ′
i are pseudo isomorphic w.r.t. some βr

i

3. ρi ∪ ρr
i , the latter defined as

ρr
i =

⋃
B∈ϕi

{renπ(B, βr
i (B))}

is a variable renaming and renπ(Hp,Hq) ⊆ ρi ∪ ρr
i .

First, the mapping κ associates each clause of p/n with a unique correspond-
ing clause in q/n. The use of κ allows to take any ordering of the clauses of p/n
and q/n into account. In the examples, however, we will often leave κ implicit
and simply assume that the i’th clause of p/n corresponds to the i’th clause of
q/n. The definition states a number of sufficient conditions that must hold be-
tween each pair of corresponding clauses in p/n and q/n so that the relations p/n
and q/n are duplicates. Firstly, there must exist a partial isomorphism between

Searching Semantically Equivalent Code Fragments in Logic Programs 13

the two clause bodies and, secondly, the code fragments that are not isomor-
phic must be pseudo isomorphic – meaning that they both contain an equal
number of recursive calls. Thirdly, the union of the variable renaming from the
isomorphism and the renamings induced by the chosen argument permutation
π between each pair of corresponding recursive calls must (1) itself be a renam-
ing, and (2) include the variable renaming induced by π between the heads of
the clauses. This third condition guarantees that there is a one-to-one mapping
(namely ρi ∪ ρr

i) between the variables of both clauses and that corresponding
variables are found in the corresponding argument positions in the heads of the
predicates as in each recursive call.

Example 10. Consider once more the definitions of append/3 and concat/3 from
Example 1. Take the argument permutation π and its induced renaming between
the heads of the predicates ρh = {X/B, Y/C,Z/A} from Example 8 . We have
that

– the body of the first clause of append/3 and the body of the first clause of
concat/3 are isomorphic w.r.t. the variable renaming ρ1 = {X/B, Y/C,Z/A}.
It follows immediately that ρh ⊆ ρ1.

– the bodies of clauses (2) and (4) are (β2, ρ2)-isomorphic modulo the code
fragments ({(2, 3)}, {(4, 3)}), with β2 and ρ2 as in Example 3. Moreover,
the code fragment {(2, 3)} is pseudo isomorphic with {(4, 3)}) (see Exam-
ple 9). The renaming induced by π between these recursive calls is ρr =
{Xs/Bs, Y/C,Zs/As} and we can verify that

ρ2 ∪ ρr = {X/B,Xe/Be,Xs/Bs, Z/A,Zs/As, Y/C}

is a variable renaming and that ρh ⊆ (ρ2 ∪ ρr).

Hence, the definitions of append/3 and concat/3 are isomorphic according to
Definition 10 with respect to the argument permutation π.

Consider, by means of counterexample, the definitions of the append/3 and
funnyappend/3 predicates from examples 1 and 9. One can easily verify that
there does not exist an argument permutation π such that

renπ(append(X,Y,Z), funnyappend(D,E, F))
⊆

renπ(append(Xs, Y, Zs), funnyappend(E,Ds, Fs))

and consequently, the third condition of Definition 10 can never be satisfied.

4.3 Case 3: Duplicated Common Functionality

It can occur that two or more predicates do not define exactly the same relation
but still are similar enough such that one can extract the common functionality
into a higher-order predicate. Each call to one of the original predicates is then re-
placed by a call to the higher-order predicate, with as an additional parameter a

14 W. Vanhoof

lambda expression defining the functionality that was specific to the original pred-
icate. A typical example is the abstraction of the rev all/2 and add1 and sqr/2
predicates from the introduction into the well-known map/3 predicate. Our frame-
work enables to formulate a set of conditions for this transformation to be appli-
cable in terms of (pseudo) isomorphisms as follows.

Definition 11. Given two predicates p/n and q/n that are defined respectively
by the sets of clauses {c1, . . . , cm} and {c′1, . . . , c′m}. Let Hp = head(p/n) and
Hq = head(q/n). The predicates p/n and q/n can be generalized into a higher-
order predicate if here exists a bijective mapping κ : {c1, . . . , cm} �→ {c′1, . . . , c′m}
and an argument permutation π between p/n and q/n such that for each pair of
corresponding clauses ci and κ(ci) holds that

1. body(ci) and body(κ(ci)) are (βi, ρi)-isomorphic modulo (ϕi, ϕ
′
i)

2. ϕi and ϕ′
i are βr

i -pseudo isomorphic modulo (ψi, ψ
′
i)

3. ρi ∪ ρr
i , the latter defined as

ρr
i =

⋃
B∈(ϕi\ψi)

{renπ(B, βr(B))}

is a variable renaming and renπ(Hp,Hq) ⊆ ρi ∪ ρr
i .

4. there exists a bijective mapping ν : exvars(ψi) �→ exvars(ψ′
i) such that

∀x ∈ exvars(ψi) : (ρi ∪ ρr
i)(x) = ν(x)

Moreover, {ψ1, . . . , ψm} and {ψ′
1, . . . , ψ

′
n} are extractions.

The situation characterized in Definition 11 is rather similar to the situ-
ation that characterizes duplicated relations (Definition 10) with the excep-
tion that each clause within an associated clause pair can have a part of its
body (the code fragments ψi in p/n and ψ′

i in q/n) that is not involved in a
(pseudo) isomorphism. To be eligible for higher-order generalization, each such
ψi in the definition of p/n must be connected and mutually isomorphic, that is
{ψ1, . . . , ψm} must be an extraction. This guarantees that each ψi can be re-
placed by a call to the same predicate. The same conditions must hold on the
code fragments {ψ′

1, . . . , ψ
′
m} in the definition of q/n. The fourth condition guar-

antees that both extractions {ψ1, . . . , ψm} and {ψ′
1, . . . , ψ

′
m} can be abstracted

into a single higher-order call.

Example 11. Reconsider the definitions of rev all/3 and add1 and sqr/3 from
the introduction. It can be easily verified that the unifications in both defini-
tions are isomorphic and that the recursive calls are pseudo-isomorphic. The
considered argument permutation is the identity permutation and the renam-
ing is the identify renaming. Hence, the only non (pseudo) isomorphic parts
are ψ = {reverse(X,Y)} in rev all/3 and ψ′ = {N is X + 1, Y is N ∗ N}
in add1 and sqr/3. We can verify that exvars(ψ) = {X,Y } = exvars(ψ′) and
hence both code fragments can be replaced by a single higher-order call of the
form P (X,Y).

Searching Semantically Equivalent Code Fragments in Logic Programs 15

5 Discussion and Related Work

In this work, we have given a formal characterization of a number of different but
related situations in which functionality is duplicated within a logic program.
The presence of duplicated functionality is the number one indication that a
refactoring should be performed [5] in order to improve the design of the code.
Refactoring as a software engineering technique has been studied mainly in the
context of object oriented programming [5] but has more recently gained some
attention in the functional [8] and logical paradigms [14]. These works concen-
trate on the transformational aspects of refactoring and they define a catalogue
of suitable transformations and the conditions under which they can safely be
applied. Automatic support is provided in the form of tools that aid the program-
mer at performing a particular transformation but the decision where and when
to refactor is left to the programmer. By searching for duplicated functionality,
our analysis attempts to automate the search for refactoring opportunities in a
logic programming context. To the best of our knowledge, our work is the first to
provide 1) a formal characterization of the envisaged refactoring opportunities
based on the notion of semantic equivalence and 2) an analysis that effectively
computes sets of semantically equivalent code fragments within a logic program.
The analysis is completely automatic and its results give the programmer an in-
dication as where to perform the considered refactoring. Moreover, the analysis
provides sufficient information such that the corresponding refactoring could be
applied automatically (although user input may still be required in order to give
suitable names to the newly introduced predicates etc.).

Computing code fragments with identical behaviour has been considered be-
fore. The work of [18] represents programs by a so-called program representation
graph and gives an algorithm that partitions this graph into program compo-
nents that exhibit identical execution behaviours. The language considered is
imperative without procedures or functions and with only scalar variables and
constants. The work is in particular targeted towards finding semantic and tex-
tual differences between two versions of the same program [7, 17]. In more recent
work, [16] also considers the task of analyzing two related imperative programs
to determine the behavioral differences between them. The latter technique con-
centrates on situations where the structural differences between the programs is
small. Also related is work on parametrised string matching as for example in
the MOSS system [13], which aims at finding near-duplication in software and
which is mainly used for detecting plagiarism in programming classes. Whether
and how the fingerprinting technique of [13] can be applied in our current setting
is an interesting topic of further research.

Our notion of a k-isomorphism, that we use to approximate the notion of se-
mantic equivalence between code fragments, does not take control dependencies
between the atoms into account. This is in accordance with the chosen seman-
tics and allows much liberty in matching code fragments as isomorphisms can be
constructed between (parts of) two conjunctions, also if the order of the atoms is
different. While this liberty in matching is definitely an advantage in order to find
as much isomorphisms as possible, it renders the search process computationally

16 W. Vanhoof

heavier and may require to impose extra conditions on the isomorphisms found
before they can be used for refactoring. One such condition is the connectedness
condition – see example 7 – necessary for transforming a code fragment into a
call to a newly defined predicate. Taking control dependencies into account dur-
ing matching can narrow the search space, and may be necessary when one wants
to adopt our techniques to find isomorphisms between fragments of programs in
which the order of the atoms is important. This issues arises when one wants to
preserve the order in which answers are found by a particular execution mecha-
nism or when one wants to deal with more involved programming constructs such
as if-then-else or with the non-logical aspects of a language like Prolog. We be-
lieve that our basic framework can be easily extended to take control structures
into account. One possibility in this direction would be matching program repre-
sentations that include data and control information, such as e.g. [19].

We have given a concrete algorithm to compute a set of isomorphisms within
a given program. The algorithm is rather naive and simply computes an arbitrary
set of isomorphisms, rather than trying to find an “optimal” set of isomorphisms.
As a proof of concept, we have implemented the algorithm (and the tests to de-
tect duplicated functionality) in Prolog. Preliminary experiments show that the
sets of isomorphisms resulting from Algorithm 3.1 are sufficiently good to han-
dle (in a completely automatic way) the examples that are presented in the
paper. Moreover, the implementation demonstrates that the technique is com-
putationally feasible. As an indication, consider the analysis of a 258-line Prolog
source file (which is part of the implementation of the analyzer) that contains
384 atoms divided over 25 predicates. Computing the set of all 1-isomorphism
(1399 in total) is the most expensive operation and takes 47.03 seconds on a
700Mhz Pentium III. Subsequently computing μ by Algorithm 3.1 takes 7.45
seconds. Although time-consuming, these computations need to be performed
only once. The subsequent searches for duplicated functionality all use the com-
puted mapping μ as a starting point. The maximum time that was registered
for comparing two predicates in search for duplicated relations was 0.02 seconds,
the mean time 0.006 seconds.

We believe that our analysis provides a solid base to automate (the search for)
a number of important refactoring opportunities. Interesting topics for further
research include the development of heuristics to guide the search for “good”
isomorphisms and extractions, rather the arbitrary ones computed by Algo-
rithms 3.1 and 4.2. Also, the incorporation of control dependencies between
atoms and clauses would render the technique useful for more involved lan-
guages like Prolog and Mercury, and might help to narrow the search space
of possible isomorphisms. In our current setting, a code fragment is restricted
to a set of atoms where all atoms belong to a single clause. By removing this
restriction, and allowing a code fragment to include sets of atoms in different
clauses, one could possibly use the resulting analysis to steer a number of more
involved transformations like folding [10] and to automate the introduction of
new program constructs, such as the logic loop of [12].

Searching Semantically Equivalent Code Fragments in Logic Programs 17

Acknowledgements

The author would like to thank the LOPSTR participants for providing interest-
ing comments and remarks. The author would also like to thank John Gallagher
for pointing out some interesting relations with other work and the anonymous
referees for providing constructive remarks.

References

1. K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, Volume B, Formal Models and Semantics, pages 493–574.
Elsevier Science Publishers B.V., 1990.

2. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The S-semantics approach:
Theory and applications. Journal of Logic Programming, 19/20:149–197, 1994.

3. Maurice Bruynooghe, Michael Leuschel, and Kostis Sagonas. A polyvariant
binding-time analysis for off-line partial deduction. In Chris Hankin, editor, Pro-
ceedings of the European Symposium on Programming (ESOP’98), volume 1381 of
Lecture Notes in Computer Science, pages 27–41. Springer-Verlag, 1998.

4. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of the
operational behaviour of logic programs. Theoretical Computer Science, 69:289–
318, 1989.

5. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Objet Technology Series. Addison-Wesley, 1999.

6. W. G. Griswold and D. Notkin. Program restructuring as an aid to software
maintenance. Technical report, Seattle, WA, USA, August 1990.

7. Susan Horwitz. Identifying the semantic and textual differences between two ver-
sions of a program. ACM SIGPLAN Notices, 25(6):234–245, 1990.

8. H. Li, C. Reinke, and S. Thompson. Tool support for refactoring functional pro-
grams. In J. Jeuring, editor, ACM SIGPLAN 2003 Haskell Workshop. Association
for Computing Machinery, 2003.

9. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
10. A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and

techniques. Journal of Logic Programming, 19/20:261–320, 1994.
11. Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk.

Theory and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.
12. Joachim Schimpf. Logical loops. In International Conference on Logic Program-

ming, volume 2401 of Lecture Notes in Computer Science, pages 224–??, 2002.
13. S. Schleimer, D.S. Wilkerson, and A. Aiken. Winnowing: local algorithms for

document fingerprinting. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of Data, San Diego, CA, 2003.

14. T. Schrijvers, A. Serebrenik, and B. Demoen. Refactoring logic programs. Technical
Report CW 373, Department of Computer Science, K.U.Leuven, 2003.

15. D. H. D. Warren. Higher-Order Extensions to Prolog: Are They Needed? volume
Machine Intelligence 10, pages 441–454. Ellis Horwood, Chichester, England, 1982.

16. J. Winstead and D. Evans. Towards differential program analysis. 2002.

18 W. Vanhoof

17. Wuu Yang. Identifying syntactic differences between two programs. Software Prac-
tice and Experience, 21(7):739–755, 1991.

18. Wuu Yang, Susan Horwitz, and Thomas Reps. Detecting program components with
equivalent behaviors. Technical Report CS-TR-1989-840, University of Wisconsin,
Madison, 1989.

19. J. Zhao, J. Cheng, and K. Ushijima. Program dependence analysis of concurrent
logic programs and its applications. In 1996 International Conference on Parallel
and Distributed Systems (ICPADS ’96), Tokyo,Japan, 1996.

Determinacy Analysis for Logic Programs
Using Mode and Type Information

P. López-Garćıa1, F. Bueno1, and M. Hermenegildo1,2

1 School of Computer Science,
Technical University of Madrid (UPM)

2 Depts. of Comp. Science and El. and Comp. Eng.,
U. of New Mexico (UNM)

{pedro.lopez, bueno, herme}@fi.upm.es

Abstract. We propose an analysis for detecting procedures and goals
that are deterministic (i.e. that produce at most one solution), or pre-
dicates whose clause tests are mutually exclusive (which implies that at
most one of their clauses will succeed) even if they are not deterministic
(because they call other predicates that can produce more than one so-
lution). Applications of such determinacy information include detecting
programming errors, performing certain high-level program transforma-
tions for improving search efficiency, optimizing low level code generation
and parallel execution, and estimating tighter upper bounds on the com-
putational costs of goals and data sizes, which can be used for program
debugging, resource consumption and granularity control, etc. We have
implemented the analysis and integrated it in the CiaoPP system, which
also infers automatically the mode and type information that our analy-
sis takes as input. Experiments performed on this implementation show
that the analysis is fairly accurate and efficient.

Keywords: Determinacy Inference, Program Analysis, Modes, Types.

1 Introduction

Knowing that certain predicates are deterministic for a given class of calls has a
number of interesting applications in program debugging, verification, transfor-
mation, and optimization. By a predicate being deterministic we mean that it
produces at most one solution. It is also interesting to detect predicates whose
clause tests are mutually exclusive (which implies that at most one of their
clauses will succeed) even if they are not deterministic because they call other
predicates that can produce more than one solution.

Perhaps the most important application of compile-time determinacy infor-
mation is in the context of program development. If we assume that the pro-
grammer has indicated that certain predicates should be deterministic for cer-
tain calling patterns (using suitable assertions as those used in Ciao [14]. Mer-
cury [25], or HAL [7]) and a predicate is determined to be non-deterministic in
one of those cases then, clearly, a compile-time error has been detected and can
be reported [14, 12]. This is quite useful since certain classes of programming

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 19–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20 P. López-Garćıa, F. Bueno, and M. Hermenegildo

errors often result in turning predicates intended to be deterministic into non-
deterministic ones. Also, in addition to detecting programming errors at compile
time, determinacy inference can obviously be used to verify (i.e., prove correct)
such determinacy assertions [14].

Determinacy information can also be used for performing low-level optimiza-
tions [21, 25] as well higher-level program transformations for improving search
efficiency. In particular, literals can be reordered so that deterministic goals are
executed ahead of possibly non-deterministic goals where possible, improving the
efficiency of parallel search [24]. Determinacy information is also very useful dur-
ing program specialization. In addition, the implementation of (and-)parallelism
is greatly simplified in presence of determinacy information: knowing that a goal
is deterministic allows one to eliminate significant run-time overhead (due to
markers) [11] and, in addition, performing data parallelism transformations [13].

Finally, determinacy (and mutual exclusion) information can be used to esti-
mate much tighter upper bounds on the computational costs of goals [5]. Since
it is generally not known in advance how many of the solutions generated by a
predicate will be demanded, a conservative upper bound on the computational
cost of a predicate can be obtained by assuming that all solutions are needed,
and that all clauses are executed (thus the cost of the predicate is assumed
to be the sum of the costs of all of its clauses). It is straightforward to take
mutual exclusion into account to obtain a more precise estimate of the cost of
a predicate, using the maximum of the costs of mutually exclusive groups of
clauses. Moreover, knowing that all literals in a clause will produce at most one
solution allows one to assume that an upper bound on the cost of the clauses
is the sum of the cost of all literals in it, which simplifies the cost estimation
(as explained in [5]). These upper bounds can be used for improved granularity
control of parallel tasks [20] and for better performance/complexity debugging
and verification of programs [14].

In this paper we propose a method whereby, given (upper approximations
of) mode and type information, we can detect procedures and goals that are
deterministic (i.e., that produce at most one solution), or predicates whose clause
tests are mutually exclusive, even if they are not deterministic because they call
other predicates that can produce more than one solution (i.e. that are not
deterministic).

There has been much interest on determinacy detection in the literature
(see [15] and its references), using several different forms of determinism. The
line of work closest to ours starts with [6], in which functional computations
are detected and exploited. However, the notion of mutual exclusion in this
work is not based on constraint satisfaction. This concept is used in the analysis
presented in [4], where, nonetheless, no algorithms are defined for the detection
of mutual exclusion. The cut is not taken into account, either. In [10] a combined
analysis of modes, types, and determinacy is presented, as well as in the more
accurate [2]. As we will show, our analysis improves on these proposals.

Several programming systems also make use of determinacy, e.g., Mercury [25,
12] and HAL [7]. The Mercury and HAL systems allow the programmer to declare

Determinacy Analysis for Logic Programs Using Mode and Type Information 21

that a predicate will produce at most one solution, and attempts to verify this
with respect to the Herbrand terms with equality tests. As far as we know, both
systems use the same analysis [12], which does not handle disequality constraints
on the Herbrand domain. Nor does it handle arithmetic tests, except in the
context of the if-then-else construct. As such, it is considerably weaker than the
approach described here. Also, our approach does not require any annotations
from programmers, since the types and modes on which it is based are inferred
(in our case by CiaoPP [14]).

2 Modes, Types, Tests, and Mutual Exclusion

We assume an acquaintance with the basic notions of logic programming. In
order to reason about determinacy, it is necessary to distinguish between unifi-
cation operations that act as tests (and which may fail), and output unifications
that act as assignments (and always succeed). To this end, we assume that mode
information is available, as a result of a previous analysis, i.e., for each unification
operation in each predicate, we know whether the operation acts as a test or cre-
ates an output binding. Note that this is weaker than most conventional notions
of moding in that it does not require input arguments to be completely ground,
and allows an output argument to occur as a subterm of an input argument.

We also assume that type information is available, generally also as the result
of a previous analysis. A type refers to a set of terms, and can be denoted by
using several type representations (e.g. type terms and regular term grammars as
in [3], or type graphs as in [16] or simply predicates as in the Ciao system). We
include below the definitions of type term, type rule, and deterministic type rule
from [3], for a better understanding of the algorithms that we have developed,
and in order to make this paper more self-contained.

We assume the existence of an infinite set of type symbols (each type symbol
refers to a set of terms, i.e., to a type). There are two special type symbols: μ,
that represents the type of the entire Herbrand universe and the type symbol φ,
that represents the empty type.

Definition 1. [Type term] A type term is defined inductively as follows:

1. A constant symbol is a type term.
2. A variable is a type term.
3. A type symbol is a type term.
4. If f is a n-ary function symbol, and each ωi is a type term, then f(ω1, . . . , ωn)

is a type term.

A pure type term is a variable-free type term. A logical term is a type-symbol-free
type term.

In this paper, we refer to logical terms as Herbrand terms. Note that according
to this definition, all type symbols are type terms, however, the converse is not true.

22 P. López-Garćıa, F. Bueno, and M. Hermenegildo

There is a distinguished non-empty finite subset of the set of type symbols
called the set of base type symbols. The set of Herbrand terms represented by
a base type symbol is called a base type. For example, the set of all constant
symbols that represent integer numbers is a base type represented by the base
type symbol integer.

Definition 2. [Type rule] A type rule is an expression of the form α→ Υ , where
α is a type symbol, and Υ is a set of pure type terms.

Example 1. The following type rule defines the type symbol intlist, that denotes
the set of all lists of integer numbers:

intlist→ {[], [integer|intlist]} �

Definition 3. A (non-base) type symbol α, is defined in, or by, a set of type
rules T if there exists a type rule (α→ Υ) ∈ T .

Definition 4. A pure type term ω is defined by a set of type rules T if each
type symbol in ω is either μ, φ, a base type symbol, or a (non-base) type symbol
defined in T .

We assume that for each type rule (α → Υ) ∈ T it holds that each element
(i.e. pure type term) of Υ is defined in T , and that each type symbol defined in
T has exactly one defining type rule in T .

Definition 5. [Deterministic type rule] A type rule α→ Υ is deterministic if no
element of Υ is a type symbol and there is no pair of pure type terms ω1, ω2 ∈ Υ ,
such that ω1 = ω2, ω1 = f(ω1

1 , . . . , ω
1
n), and ω2 = f(ω2

1 , . . . , ω
2
n).

For instance, the type rule in Example 1 is deterministic. The class of types that
can be described by deterministic type rules is the same as the class of tuple-
distributive regular types [3]. Additional background on type-related issues may
be found in [3, 16].

For concreteness, the determinacy analysis we describe is based on regular
types [3], which are specified by regular term grammars in which each type symbol
has exactly one defining type rule, although it can easily be generalized to other
type systems.

Let type[q] denote the type of each predicate q in a given program. In this
paper, we are concerned exclusively with “calling types” for predicates —in other
words, when we say “a predicate p in a program P has type type[p]”, we mean
that in any execution of the program P starting from some class of queries of
interest, whenever there is a call p(t̄) to the predicate p, the argument tuple t̄ in
the call will be an element of the set denoted by type[p].

A primitive test is an “atom” whose predicate is a built-in such as the unifi-
cation or some arithmetic predicate (<,>,≤,≥, =, etc.) which acts as a “test”
(note that with our assumptions of having available both mode and type infor-
mation for each variable in a program, it is straightforward to identify primitive

Determinacy Analysis for Logic Programs Using Mode and Type Information 23

tests in a program). We define a test to be either a primitive test, or a conjunc-
tion τ1 ∧ τ2, or a disjunction τ1 ∨ τ2, or a negation ¬τ1, where τ1 and τ2 are
tests.

We denote the Herbrand Universe (i.e., the set of all ground terms) as H,
and the set of n–tuples of elements of H as Hn. Given a (finite) set of variables
V = {x1, . . . , xn}, a type assignment ρ over V is a mapping from V to a set of
types, written as (x1 : ω1, . . . , xn : ωn), where ρ(xi) = ωi, for 1 ≤ i ≤ n, and
ωi is a (nonempty) type representation (a type term in the algorithms that we
present). Given a term t and a type representation ω, in an abuse of terminology
we say that t ∈ ω, meaning that t belongs to the set of terms denoted by ω.

We now define some notions related to clause tests and determinacy. Where
necessary to emphasize the input test in a clause (i.e. the conjunction of primitive
tests in the body), we will write the clause in “guarded” form, as:

p(x1, . . . , xn) :− input tests(x1, . . . , xn) [] Body .
As an example, consider a predicate defined by the clauses:

abs(X,Y) :− X ≥ 0 [] Y = X.
abs(Y,Z) :− Y < 0 [] Z = −Y.

Assume we know that this predicate will always be called with its first argument
bound to an integer. Obviously, for any particular call, only one of the tests
‘X ≥ 0’ or ‘X < 0’ will succeed (i.e. the tests are mutually exclusive).

Fundamental to our approach to detecting determinacy is the notion of tests
being “exclusive” w.r.t. a type assignment:

Definition 6. Two tests τ1(x̄) and τ2(x̄) are exclusive w.r.t. a type assignment
x̄ : ω̄, if for every t̄ ∈ ω̄, x̄ = t̄ ∧ τ1(x̄) ∧ τ2(x̄) is unsatisfiable.

Definition 7. Let C1, . . . , Cn, n > 0, be a sequence of clauses, with input tests
τ1(x̄), . . . , τn(x̄) respectively. Let ρ be a type assignment. We say that C1, . . . , Cn

is mutually exclusive w.r.t. ρ if either, n = 1, or, for every pair of clauses Ci and
Cj , 1 ≤ i, j ≤ n, i = j, τi(x̄) and τj(x̄) are exclusive w.r.t. ρ.

Consider a predicate p defined by n clauses C1, . . . , Cn, with input tests
τ1(x̄), . . . , τn(x̄) respectively:

p(x̄) :− τ1(x̄) [] Body1.
. . .
p(x̄) :− τn(x̄) [] Bodyn.

We assume, without loss of generality, that each τi(x̄) is a conjunction of prim-
itive tests (note that it is always possible to obtain an equivalent sequence of
clauses where disjunctions have been removed).

Suppose that the predicate p has type type[p]: in the interest of simplicity, we
sometimes say that the predicate p is mutually exclusive w.r.t. the type type[p]
(or simply say that the predicate p is mutually exclusive) if the sequence of
clauses C1, . . . , Cn defining p is mutually exclusive w.r.t. the type assignment
x̄ : type[p]. Given a call c to predicate p in the body of a clause, we also say that
c is mutually exclusive if p is. Note that if the predicate p is mutually exclusive,
then at most one of its clauses will succeed for any call p(t̄), with t̄ ∈ ω̄.

24 P. López-Garćıa, F. Bueno, and M. Hermenegildo

3 Determinacy Analysis

In this section we explain our algorithm for detecting predicates and goals that
are deterministic (i.e., that produce at most one solution). Before introducing our
algorithm, we give some instrumental definitions. We define the “calls” relation
between predicates in a program as follows: p calls q, written p � q, if and only
if a literal with predicate symbol q appears in the body of a clause defining p.
Let �� denote the reflexive transitive closure of �. The following result shows
the importance of mutual exclusion information for detecting determinacy:
Theorem 1. A predicate p in the program is deterministic if, for each predicate
q such that p �� q, q is mutually exclusive.
Proof. Assume that p is not deterministic, i.e., there is a goal p(t̄), with
t̄ ∈ type[p], which is not deterministic. It is a straightforward induction on the
number of resolution steps to show that there is a q such that p �� q and q is
not mutually exclusive.

Our algorithm for detecting determinacy consists on first determining which
predicates are mutually exclusive (which is in fact the complex part, and is
explained in detail in Section 4). Then, inferring determinacy is straightfor-
ward: from Theorem 1, analysis of determinacy reduces to the determination of
reachability in the call graph of the program. In other words, a predicate p is
deterministic if there is no path in the call graph of the program from p to any
predicate q that is not mutually exclusive. It is straightforward to propagate
this reachability information in a single traversal of the call graph in reverse
topological order. The idea is illustrated by the following example.
Example 2. Consider the following predicate taken from a quicksort program:

qs(X1,X2) :− X1 = [] [] X2 = [].
qs(X1,X2) :− X1 = [H|L] [] part(H,L,Sm,Lg),

qs(Sm,Sm1), qs(Lg,Lg1), app(Sm1,[H|Lg1],X2).

Assume that it has been inferred that qs/2 will be used with mode (in, out)
and type (intlist, -), and assume we have already shown that part/4 and
app/3 are mutually exclusive w.r.t. the types (integer, intlist, -, -) and
(intlist, intlist, -) inferred for their body literals in the recursive clause
above. The input tests for the sequence of clauses of qs/2 are X1 = [] , X1 =
[H|L], which are mutually exclusive w.r.t. the type intlist, which means that
at most one head unification will succeed for qs/2. It follows that a call to qs/2
with the first argument bound to a list of integers is deterministic, in the sense
that at most one of the clauses of qs/2 will succeed, and if it does, it succeeds
only once (thus, at most, only one solution will be produced). �

4 Checking Mutual Exclusion

Our approach to the problem of determining whether two tests τ1(x̄) and τ2(x̄)
are exclusive w.r.t. a type assignment x̄ : ω̄, consists of partitioning the test

Determinacy Analysis for Logic Programs Using Mode and Type Information 25

τ1(x̄) ∧ τ2(x̄) such that tests in different resulting partitions involve different
constraint systems, and then applying to each partition an algorithm specific to
the corresponding constraint system that checks mutual exclusion. In this pa-
per we consider two commonly encountered constraint systems: Herbrand terms
with equality and disequality tests, on variables with tuple-distributive regular
types [3] (i.e., as mentioned in Section 2, types which are specified by regular
term grammars in which each type symbol has exactly one defining type rule
and each type rule is deterministic); and for linear arithmetic tests on integer
variables.

4.1 Checking Mutual Exclusion in the Herbrand Domain

We present a decision procedure for checking mutual exclusion of tests that is
inspired by a result, due to Kunen [17], that the emptiness problem is decidable
for Boolean combinations of (notations for) certain “basic” subsets of the Her-
brand universe of a program. It also uses straightforward adaptations of some
operations described by Dart and Zobel [3].

The reason the mutual exclusion checking algorithm for Herbrand is as com-
plex as it is, is that we want a complete algorithm for equality and disequality
tests. It is possible to simplify this considerably if we are interested in equality
tests only. Before describing the algorithm, we introduce some definitions and
notation.

We use the notions (to be defined later in this section) of type-annotated term,
and in general elementary set, as representations which denote some subsets of
Hn (for some n ≥ 1). These subsets can be, for example, the set of n-tuples for
which a test succeeds, or a “calling type” for a predicate p (i.e. the set denoted
by type[p]). Given a representation S (elementary set or type-annotated term),
Den(S) refers to the subset of Hn denoted by S.

Definition 8. [type-annotated term] A type-annotated term is a pair M =
(t̄M , ρM), where t̄M is a tuple of terms, and ρM is a type assignment. A type-
annotated term (t̄M , ρM) denotes the set of all the ground terms t̄Mθ, where θ
is some substitution, such that xθ ∈ ρM (x) for each variable in t̄M .

Given a type-annotated term (t̄, ρ), the tuple of terms t̄ can be regarded as
a Herbrand term (i.e. a type-symbol-free type term) and ρ can be considered
to be a type substitution 1, so that, if we apply this type substitution to t̄, we
get a pure type term (a variable-free type term). This is useful for defining the
“intersection” and “inclusion” operations over type-annotated terms (that we
define later) using the algorithms described by Dart and Zobel [3] for performing
these operations over pure type terms. When we have a type-annotated term
(t̄, ρ) such that ρ(x) = μ for each variable x in t̄, we omit the type assignment
ρ for brevity and use the tuple of terms t̄ (recall that μ denotes the type of
the entire Herbrand universe). Thus, a tuple of terms t̄ with no associated type

1 A type substitution is similar to a substitution that maps variables to type terms.
A detailed definition of type substitutions is given in [3].

26 P. López-Garćıa, F. Bueno, and M. Hermenegildo

assignment can be regarded as a type-annotated term which denotes the set of
all ground instances of t̄.

Definition 9. [elementary set] An elementary set is defined as follows:

– Λ is an elementary set, and denotes the empty set (i.e., Den(Λ) = ∅);
– a type-annotated term (t̄, ρ) is an elementary set; and
– if A and B are elementary sets, then A ⊗ B, A ⊕ B and comp(A) are

elementary sets that denote, respectively, the sets of (tuples of) terms
Den(A) ∩Den(B), Den(A) ∪Den(B), and Hn \Den(A).

We define the following relations between elementary sets: A � B iff
Den(A) ⊆ Den(B). A � B iff Den(A) ⊂ Den(B). A � B iff Den(A) = Den(B).

We define below two particular classes of elementary sets, namely, cobasic
sets and minsets, which are suitable representations of tests for the algorithms
that we present in this paper. A test τ(x̄) that is a conjunction of unification
and disunification tests, is represented as a minset that denotes the set of ground
instances of x̄ (i.e., subsets ofHn, assuming that x̄ is a n-tuple) for which the test
succeeds. In Figure 1 we will provide the test2minset function, which gives the
minset representation of a test. A disunification test is represented by a cobasic
set (which denotes the complementary set of a subset of Hn).

Definition 10. [cobasic set] A cobasic set is an elementary set of the form
comp(t̄), where t̄ is a tuple of terms (recall that t̄ is in fact a type-annotated
term (t̄, ρ) such that ρ(x) = μ for each variable x in t̄).

Definition 11. [minset] A minset is either Λ or an elementary set of the form
A ⊗ comp(B1) ⊗ · · · ⊗ comp(Bn), for some n ≥ 0, where A is a tuple of terms,
comp(B1), . . . , comp(Bn) are cobasic sets, and for all 1 ≤ i ≤ n, Bi = Aθi and
A � Bi for some substitution θi (i.e. Bi � A).

For brevity, we write a minset of the form A⊗ comp(B1)⊗· · ·⊗ comp(Bn) as
A/C, where C = {comp(B1), . . . , comp(Bn)}. We also denote the tuple of terms
of a cobasic set Cob ≡ comp(B) as t̄Cob, i.e. t̄Cob ≡ B.

Example 3. We define some examples of type-annotated terms A, B, and
C as follows: A = ((x, y), (x : α1, y : α2)), where α1 → {f(μ)}, and
α2 → {g(μ), h(μ)}; B is the type-annotated term such that t̄B ≡ (f(z), w)
and ρB ≡ (z : μ,w : α2) (note that A and B denote the same subset
of Hn, i.e., Den(A) = Den(B)); C is the type-annotated term with t̄C ≡
(f(v1), g(v2), v3, v4, f(a), f(v5), v6) and ρC ≡ (v1 : μ, v2 : list, v3 : α2, v4 : α3, v5 :
α3, v6 : list), where α3 → {a, b} and list→ {[], [μ|list]}. �

Definition 12. [type-annotated term instance] Let A and B be two type-
annotated terms. We say that A is an instance of B if A � B and there is
a substitution θ such that t̄A = t̄Bθ.

Determinacy Analysis for Logic Programs Using Mode and Type Information 27

test2minset(τ):

Input: a conjunction of unification and disunification tests τ . We assume that τ is of
the form E ∧D1 ∧ · · · ∧Dn, where E is the conjunction of all unification tests of τ
(i.e., a system of equations) and each Di a disunification test (i.e., a disequation).

Output: a minset S representing the test τ (i.e., the set of tuples of terms Den(S) is
equal to the set of solutions of τ).

1. Let θ be the substitution associated with the solved form of E (this can be
computed by using the techniques of Lassez et al. [18]).

2. Let θi, for 1 ≤ i ≤ n, be the substitution associated with the solved form of
E ∧ Ni, where Ni is the negation of Di.

3. S = A ⊗ comp(B1) ⊗ · · · ⊗ comp(Bn), where A = (x̄)θ and Bi = (x̄)θi, for
1 ≤ i ≤ n.

Fig. 1. Definition of the function test2minset

Let τ1 and τ2 be tests which are conjunctions of unification and disunification
tests, and ρ a type assignment. Let M be a type-annotated term representing the
type assignment ρ. Let Si be a minset representing τi, for i = 1, 2, the function
test2minset , defined in Figure 1, gives the minset representation of a test, i.e.,
Si = test2minset(τi).

We have that τ1 and τ2 are exclusive w.r.t. ρ if and only if M⊗S1⊗S2 � Λ. Let
S be the minset resulting of computing S1⊗S2 (this intersection can be trivially
defined in terms of most general unifiers of the tuples of terms composing the
minsets S1 and S2). Then, the fundamental problem is to devise an algorithm
to test whether M ⊗S � Λ, where M is a type-annotated term and S a minset.
The algorithm that we propose is given by the boolean function empty(M,S).
Due to space limitations, we provide a high level description of this function. A
detailed algorithm for its implementation can be found in [19].

– First, perform the “intersection” of M and the tuple of terms A of the
minset S (we assume that S = A/C). Let R denote this intersection (i.e.
M⊗A). For example, assume that M denotes ((X), (X : list)) and S denotes
(X3)/{comp([]), comp([X1|X2])}. In this case, A denotes the tuple of terms
(X3) and C denotes the set of cobasic sets {comp([]), comp([X1|X2])}. Thus,
the “intersection” of M and A is the type-annotated term ((X4), (X4 : list))
(denoted by R).

– If R is empty (i.e., R � Λ), or A is “included” in R (i.e. A � R), then it can be
reported that M ⊗S � Λ (the “inclusion” operation can be defined by using
a straightforward adaptation of the function subsetT (ω1, ω2) described in [3],
that determines whether the type denoted by a pure type term is a subset
of the type denoted by another). In our example, none of these conditions
hold (recall that the tuple of terms (X3) represents the type-annotated term
((X3), (X3 : μ))).

– Otherwise, the problem is reduced to checking whether R/C � Λ.

28 P. López-Garćıa, F. Bueno, and M. Hermenegildo

– This way, if R is “included” in some tuple of terms of some cobasic set in C,
then it can be reported that R/C � Λ.

– Otherwise, it means that R is “too big”, and thus, it is “expanded” to a
set of “smaller” type-annotated terms (with the hope that each of them will
be “included” in the tuple of terms of some cobasic set in C). This way,
the initial problem is reduced to a set of subproblems, one subproblem for
each element in the set of “smaller” type-annotated terms to which R has
been “expanded”. This holds in the example, where the type-annotated term
((X4), (X4 : list)) is “expanded” to a set of two “smaller” type-annotated
terms {R1, R2} where R1 denotes (([X5|X6]), (X5 : μ,X6 : list)) and R2

denotes (([]), ∅) (∅ denotes an empty type assignment, since ([]) has no
variables). Then, two subproblems arise:

• Checking whether R1/C � Λ, which holds because (([X5|X6]), (X5 :
μ,X6 : list)) is “included” in ([X1|X2])) (the tuple of terms of the
cobasic set comp([X1|X2])); and

• Checking whether R2/C � Λ is empty, which also holds because (([]), ∅)
is “included” in the tuple of terms of the cobasic set comp([]).

– Thus, it can be concluded that R/C � Λ and hence M ⊗ S � Λ.

In [19] conditions are defined for ensuring that type-annotated terms are not
infinitely expanded, and hence ensuring termination. Intuitively, these conditions
are based on detecting and removing “useless” cobasic sets from C, and also on
expanding the type-annotated term R into type-annotated terms whose depth
is bounded (it is always possible to detect when it is not necessary to expand
type-annotated terms to more than a “decision depth” in order to solve the
corresponding subproblem). We say that a cobasic set Cob is “useless” whenever
if R/(C − {Cob}) � Λ, then R/C � Λ. For example, if the tuple of terms of
a cobasic set Cob in C is “disjoint” with R, then it is useless. This way, if C
becomes empty, then R/C � Λ.

4.2 Checking Mutual Exclusion in Linear Arithmetic Over Integers

In this section, we give an algorithm for checking whether two linear arithmetic
tests τi(x̄) and τj(x̄) are exclusive w.r.t. the type assignment of integer to
each variable in x̄. This amounts to determining whether (∃x̄)(τi(x̄) ∧ τj(x̄)) is
unsatisfiable.

The system τi(x̄)∧ τj(x̄) can be transformed into disjunctive normal form as:

(τi(x̄) ∧ τj(x̄)) =
∨n

k=1

∧m
l=1 φkl(x̄)

where each of the tests φkl(x̄) is of the form φkl(x̄) ≡ a0 +a1x1 + · · ·+apxp ©? 0,
with ©? ∈ {=, <,≤, >,≥}. For doing this transformation, note that a test of the
form

∑p
i=0 aixi = 0 can be written in terms of two tests involving the operators

‘>’ and ‘<’:

(
∑p

i=0 aixi > 0) ∨ (
∑p

i=0 aixi < 0)

Determinacy Analysis for Logic Programs Using Mode and Type Information 29

The resulting system, transformed to disjunctive normal form, defines a set
of integer programming problems: the answer to the original mutual exclusion
problem is “yes” if and only if none of these integer programming problems has a
solution. Since a test can give rise to at most finitely many integer programming
problems in this way, it follows that the mutual exclusion problem for linear
integer tests is decidable.

Since determining whether an integer programming problem is solvable is
NP-complete [9], it is straightforward to show that the mutual exclusion prob-
lem for linear arithmetic tests over the integers is co-NP-hard. It should be noted,
however, that the vast majority of arithmetic tests encountered in practice tend
to be fairly simple: our experience has been that tests involving more than two
variables are rare. The solvability of integer programs in the case where each
inequality involves at most two variables, i.e., is of the form ax+ by ≤ c, can be
decided efficiently in polynomial time by examining the loops in a graph con-
structed from the inequalities [1]. The integer programming problems that arise
in practice, in the context of mutual exclusion analysis, are therefore efficiently
decidable.

The ideas explained in this section for linear arithmetic over integers extend
directly to linear tests over the reals, which turn out to be computationally
somewhat simpler.

4.3 Checking Mutual Exclusion: Putting It All Together

Consider a predicate p defined by n clauses C1, . . . , Cn, with input tests
τ1(x̄), . . . , τn(x̄) respectively:

p(x̄) :− τ1(x̄) [] Body1.
. . .
p(x̄) :− τn(x̄) [] Bodyn.

Assume that the predicate p has type type[p]. We also assume, without loss
of generality, that each τi(x̄) is a conjunction of primitive tests (see Section 2).

In order to check whether the predicate p is mutually exclusive (i.e. its clauses
are mutually exclusive w.r.t. the type assignment x̄ : type[p]) we need to solve
the problem of determining whether a pair of tests τi(x̄) and τj(x̄), 1 ≤ i, j ≤
n, i = j, are exclusive w.r.t. x̄ : type[p]. Let ρ be the type assignment x̄ :
type[p]. Consider the type assignment ρ written as a type-annotated term M ,
and consider each τi(x̄) written as τH

i ∧τA
i , where τH

i and τA
i are a conjunction of

primitive unification and arithmetic tests respectively (i.e., we write arithmetic
tests after unification tests). Consider also each τH

i written as a minset Di (the
function test2minset , defined in Figure 1, gives the minset representation of a
test). We have that the pair of tests τi(x̄) and τj(x̄), are exclusive w.r.t. ρ if:

1. M ⊗Di ⊗Dj � Λ (this can be checked as explained in Section 4.1), or
2. M ⊗ Di ⊗ Dj � Λ and τA

i θi ∧ τA
j θj is unsatisfiable, where θi (resp. θj),

is the most general unifier of the tuple of terms of Dij and Di (resp. Dj),
and Dij is the minset intersection of Di and Dj . That is, if Di ≡ Ai/Bi,
Dj ≡ Aj/Bj , and Dij ≡ Aij/Bij , then θi = mgu(Ai, Aij), Aij ≡ Aiθi,

30 P. López-Garćıa, F. Bueno, and M. Hermenegildo

θj = mgu(Aj , Aij), Aij ≡ Ajθj (note that there exists a substitution μij ,
such that μij = mgu(Ai, Aj)). We use the algorithm described in Section 4.2
for checking whether τA

i θi ∧ τA
j θj is unsatisfiable.

Example 4. Let p be the predicate partition/4 from the familiar quicksort
program. Let X = [], (X = [H|L] ∧ H > Y), (X = [H|L] ∧ H ≤ Y) be the
sequence of tests for the clauses in p and let ρ be (X : intlist, Y : integer), where
intlist → {[], [integer|intlist]}. In this case, we have that M is ((X,Y), (X :
intlist, Y : integer)). τ1(x̄) ≡ X = [], τ2(x̄) ≡ X = [H|L]∧H > Y , and τ3(x̄) ≡
X = [H|L] ∧H ≤ Y . τ1(x̄) can be written as τH

1 ∧ τA
1 , where τH

1 ≡ X = [] and
τA
1 ≡ true. Similarly, τH

2 ≡ X = [H|L] and τA
2 ≡ H > Y , and τH

3 ≡ X = [H|L]
and τA

3 ≡ H ≤ Y . D1 ≡ ([], Y), D2 ≡ ([H|L], Y), and D3 ≡ ([H|L], Y). We have
that partition/4 is mutually exclusive because: M ⊗ Di ⊗ Dj � Λ, for i = 1
and j ∈ {2, 3}, and (although M ⊗D2⊗D3 � Λ), we have that H > Y ∧H ≤ Y
is unsatisfiable (note that D2,3 ≡ ([H|L], Y), and θ2 and θ3 are the identity). �

4.4 Checking Mutual Exclusion: Dealing with the Cut

The presence of the pruning operator (cut) in the clauses of a program can
help the detection of mutual exclusion of clauses. In order to take the cut into
account, we simply redefine the concept of mutually exclusive clauses given in
Definition 7 as follows:

Definition 13. Let C1, . . . , Cn, n > 0, be a sequence of clauses, with input tests
τ1, . . . , τn respectively. Let ρ be a type assignment. We say that C1, . . . , Cn is
mutually exclusive w.r.t. ρ if either, n = 1, or, for every pair of clauses Ci and
Cj , 1 ≤ i, j ≤ n, i = j:

1. Ci has a cut and and i < j, or
2. Cj has a cut and and j < i, or,
3. τi(x̄) and τj(x̄) are exclusive w.r.t. ρ.

We also have to take into account that the pruning operator introduces im-
plicit tests. Consider a predicate p defined by n clauses C1, . . . , Cn, with input
tests τ1(x̄), . . . , τn(x̄) respectively:

p(x̄) :− τ1(x̄) [] Body1.
. . .
p(x̄) :− τn(x̄) [] Bodyn.

Let I be the set of indexes k of clauses Ck which have a cut and are before
the clause Ci (i.e. k < i). Let τ b

k be the test (conjunction of tests) that is before
the cut in clause Ck (i.e. τk ≡ τ b

k ∧ τa
k , where τa

k is the test that is after the cut
in clause Ck).

Now, instead of considering the test τi, for 1 ≤ i ≤ n, in Definition 13, we
take the test τ c

i defined as follows:

τ c
i =
{
τi if I = ∅
(
∧

k∈I ¬τ b
k) ∧ τi otherwise.

Determinacy Analysis for Logic Programs Using Mode and Type Information 31

Note that the introduction of the negation in the tests τ c
i is not a problem,

since it is always possible to reduce the problem of determining whether a pair
of tests τ c

i and τ c
j are exclusive w.r.t. a given type assignment, to one o more

exclusion subproblems where the pair of tests involved in each subproblem are
conjunctions of primitive tests (transforming tests to disjunctive normal form).

5 Improving Determinacy Analysis Using Cut

The presence of the pruning operator in the clauses of a program not only im-
proves detection of mutual exclusion, but it can also help in the overall process
of detecting deterministic predicates. Besides helping the detection of mutual
exclusion of clauses (as we have seen before), it can also improve the propa-
gation algorithm given in Section 3. Assume that we would like to infer that
a predicate p is deterministic. Consider any clause defining p in which one or
more cuts appear, and any body literals that appear to the left of the rightmost
cut in that clause. Those literals are not required to be deterministic (we say
that a literal with predicate symbol q is deterministic if q is). In other words,
in Theorem 1, we can use a restricted definition (�r) of the “call” relation (�)
between predicates in a program, defined as follows: p �r q, if and only if a
literal with predicate symbol q appears in the body of a clause defining p, and
there is no cut to the right of this literal in the clause. Similarly, ��

r denotes the
reflexive transitive closure of �r.

6 A Prototype Implementation

In order to evaluate the effectiveness and efficiency of our approach to determi-
nacy analysis we have constructed a relatively complete prototype which per-
forms such analysis in an automatic way. The system takes Prolog programs
as input,2 which include a module definition in the standard way. In addition,
the types and modes of the arguments of exported predicates are either given
or obtained from other modules during modular type and mode analysis (in-
cluding the intervening type definitions). The system uses the CiaoPP PLAI
analyzer to derive mode information, using, for the reported experiments, the
Sharing+Freeness domain [22], and an adaptation of Gallagher’s analysis to
derive the types of predicates [8]. The resulting type- and mode-annotated pro-
grams are then analyzed using the algorithms presented for Herbrand and linear
arithmetic tests.

Herbrand mutual exclusion is checked by a naive direct implementation of
the analyses presented. Testing of mutual exclusion for linear arithmetic tests is
implemented directly using the Omega test [23]. This test determines whether

2 In fact, the input language currently supported includes also a number of extensions
—such as functions or feature terms— which are translated by the first (expansion)
passes of the Ciao compiler to clauses, possibly with cut.

32 P. López-Garćıa, F. Bueno, and M. Hermenegildo

there is an integer solution to an arbitrary set of linear equalities and inequalities,
referred to as a problem.

We have tested the prototype first on a number of simple standard benchmarks,
and then on more complex ones. The latter are taken from those used in the car-
dinality analysis of Braem et al. [2], which is the closest related previous work
that we are aware of. In the case of Kalah, we have inserted the missing cuts as
is also done in [2], to make the comparison meaningful. Some relevant results of
these tests are presented in Table 1. Program lists the program names, N the
number of predicates in the program, D the number of predicates detected by the
analysis as deterministic, M the number of predicates whose tests are mutually
exclusive, C the number of deterministic predicates detected in [2], TD the time
required by the determinacy analysis (Ciao version 1.9p111 and CiaoPP-0.8, on
a medium-loaded Pentium IV Xeon 2.0Ghz, 1Gb of RAM memory, running Red
Hat Linux 8.0, and averaging several runs, eliminating the best and worst values),
TM the time required to derive the modes and types, and TT the total analysis
time (all times are given in milliseconds). Averages (per predicate in the case of
analysis time) are also provided in the last row of the table.

Table 1. Accuracy and efficiency of the determinacy analysis (times in mS)

Program N D (%) M (%) C TD TM TT

Hanoi 2 2 (100) 2 (100) N/A 69 79 148

Fib 1 1 (100) 1 (100) N/A 39 19 58

Mmatrix 3 3 (100) 3 (100) N/A 89 79 168

Tak 1 1 (100) 1 (100) N/A 49 29 78

Subs 1 1 (100) 1 (100) N/A 70 19 89

Reverse 2 2 (100) 2 (100) N/A 39 19 58

Qsort 3 3 (100) 3 (100) 3 (100) 50 69 119

Qsort2 5 5 (100) 5 (100) 5 (100) 99 70 169

Queens 6 3 (50) 5 (83) 2 (33) 99 59 158

Gabriel 20 6 (30) 11 (55) 4 (20) 360 279 639

Kalah 44 40 (91) 42 (95) 40 (91) 1110 3589 4699

Plan 16 8 (50) 12 (75) 3 (19) 459 949 1408

Credit 25 18 (72) 21 (84) 16 (64) 1209 359 1568

Pg 10 6 (60) 9 (90) 6 (60) 440 209 649

Mean – 71% 85% 61% 30 (/p) 42 (/p) 72 (/p)

The results are quite encouraging, showing that the developed analysis is
fairly accurate. The analysis is more powerful in some cases than the cardinality
analysis [2], and at least as accurate in the others. It is pointed out in [2] that
determinacy information can be improved by using a more sophisticated type
domain. This is also applicable to our analysis, and the types inferred by our
system are similar to those used in [2]. The determinacy analysis times are also
encouraging, despite the currently relatively naive implementation of the system
(for example, the call to the omega test is done by calling an external process).

Determinacy Analysis for Logic Programs Using Mode and Type Information 33

The overall analysis times are also reasonable, even when including the type
and mode analysis times, which are in any case very useful in other parts of the
compilation process.

7 Conclusions

We have proposed an analysis for detecting procedures and goals that are de-
terministic (i.e. that produce at most one solution), or predicates whose clause
tests are mutually exclusive, even if they are not deterministic (because they
call other predicates which are nondeterministic). This approach has advantages
w.r.t. previous approaches in that it provides an algorithm for detecting mutual
exclusion and it handles disequality constraints on the Herbrand domain and
arithmetic tests.

We have implemented the proposed analysis and integrated it into the
CiaoPP system, which also infers automatically the mode and type informa-
tion that the proposed analysis takes as input. The results of the experiments
performed on this implementation show that the analysis is fairly accurate and
efficient, providing more accurate or similar results, regarding accuracy, than
previous proposals, while offering substantially higher automation, since typi-
cally no information is needed from the user.

Acknowledgments

This work has been supported in part by the European Union IST program under
contracts IST-2001-38059 “ASAP”, by MCYT project TIC 2002-0055 “CUBICO”,
by FEDER infrastructure project UNPM-E012, and by the Prince of Asturias
Chair in Information Science and Technology at the University of New Mexico.
We would also like to thank the anonymous reviewers for their useful comments
on earlier versions of the paper.

References

1. B. Aspvall and Y. Shiloach. A polynomial time algorithm for solving systems of
linear inequalities with two variables per inequality. In Proc. 20th ACM Symposium
on Foundations of Computer Science, pages 205–217, October 1979.

2. C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis
of prolog. In Proc. International Symposium on Logic Programming, pages 457–
471, Ithaca, NY, November 1994. MIT Press.

3. P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In Types
in Logic Programming, pages 157–187. MIT Press, 1992.

4. S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and R.C. Sekar. Extract-
ing Determinacy in Logic Programs. In 1993 International Conference on Logic
Programming, pages 424–438. MIT Press, June 1993.

5. S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions
on Programming Languages and Systems, 15(5):826–875, November 1993.

34 P. López-Garćıa, F. Bueno, and M. Hermenegildo

6. S.K. Debray and D.S. Warren. Functional computations in logic programs. ACM
Transactions on Programming Languages and Systems, 11(3):451–481, 1989.

7. B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, and P. Stuckey. An
overview of HAL. In PPCP’99: Principles and Practice of Constraint Program-
ming, pages 174–178, 1999.

8. J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of
logic programs. In Pascal Van Hentenryck, editor, Proc. of the 11th International
Conference on Logic Programming, pages 599–613. MIT Press, 1994.

9. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, New York, 1979.

10. Roberto Giacobazzi and Laura Ricci. Detecting determinate computations by
bottom-up abstract interpretation. In Symposium proceedings on 4th European
symposium on programming, pages 167–181. Springer-Verlag, 1992.

11. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-
tion of Prolog Programs: a Survey. ACM Transactions on Programming Languages
and Systems, 23(4):472–602, July 2001.

12. F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in the Mer-
cury compiler. In Proc. Australian Computer Science Conference, pages 337–346,
Melbourne, Australia, January 1996.

13. M. Hermenegildo and M. Carro. Relating Data–Parallelism and (And–) Parallelism
in Logic Programs. The Computer Languages Journal, 22(2/3):143–163, July 1996.

14. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In 10th
International Static Analysis Symposium (SAS’03), number 2694 in LNCS, pages
127–152. Springer-Verlag, June 2003.

15. P.M. Hill and A. King. Determinacy and determinacy analysis. Journal of Pro-
gramming Languages, 5(1):135–171, December 1997.

16. G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Pro-
gram Variables by means of Abstract Interpretation. Journal of Logic Program-
ming, 13(2 and 3):205–258, July 1992.

17. K. Kunen. Answer Sets and Negation as Failure. In Proc. of the Fourth Interna-
tional Conference on Logic Programming, pages 219–228, Melbourne, May 1987.
MIT Press.

18. J.-L. Lassez, M. Maher, and K. Marriott. Unification Revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–
626. Morgan Kaufman, 1988.

19. P. López-Garćıa, F. Bueno, and M. Hermenegildo. Towards Determinacy Anal-
ysis for Logic Programs Using Mode and Type Information. Technical Report
CLIP4/2005.0, Technical University of Madrid (UPM), School of Computer Sci-
ence, UPM, April 2005.

20. P. López-Garćıa, M. Hermenegildo, and S.K. Debray. A Methodology for Granu-
larity Based Control of Parallelism in Logic Programs. Journal of Symbolic Com-
putation, Special Issue on Parallel Symbolic Computation, 22:715–734, 1996.

21. J. Morales, M. Carro, and M. Hermenegildo. Improving the Compilation of Prolog
to C Using Moded Types and Determinism Information. In Proceedings of the Sixth
International Symposium on Practical Aspects of Declarative Languages, number
3507 in LNCS, pages 86–103, Heidelberg, Germany, June 2004. Springer-Verlag.

22. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna-
tional Conference on Logic Programming, pages 49–63. MIT Press, June 1991.

Determinacy Analysis for Logic Programs Using Mode and Type Information 35

23. W. Pugh. A Practical Algorithm for Exact Array Dependence Analysis. Commu-
nications of the ACM, 35(8):102–114, August 1992.

24. V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog
System that Transparently Exploits both And- and Or-parallelism. In Proceedings
of the 3rd. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 83–93. ACM, April 1991. SIGPLAN Notices vol 26(7), July
1991.

25. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative logic programming language. JLP, 29(1–3), October
1996.

Mechanical Verification of Automatic Synthesis
of Fault-Tolerant Programs1

Sandeep S. Kulkarni, Borzoo Bonakdarpour, and Ali Ebnenasir

Department of Computer Science and Engineering,
Michigan State University,

48824 East Lansing, Michigan, USA
{sandeep, borzoo, ebnenasi}@cse.msu.edu

http://www.cse.msu.edu/∼{sandeep,borzoo,ebnenasi}

Abstract. Fault-tolerance is a crucial property in many systems. Thus,
mechanical verification of algorithms associated with synthesis of fault-
tolerant programs is desirable to ensure their correctness. In this paper,
we present the mechanized verification of algorithms that automate the
addition of fault-tolerance to a given fault-intolerant program using the
PVS theorem prover. By this verification, not only we prove the correct-
ness of the synthesis algorithms, but also we guarantee that any program
synthesized by these algorithms is correct by construction. Towards this
end, we formally define a uniform framework for formal specification and
verification of fault-tolerance that consists of abstract definitions for pro-
grams, specifications, faults, and levels of fault-tolerance, so that they are
independent of platform and architecture. The essence of synthesis algo-
rithms involves fixpoint calculations. Hence, we also develop a reusable
library for fixpoint calculations on finite sets in PVS.

Keywords: Fault-tolerance, PVS, Program synthesis, Program trans-
formation, Mechanical verification, Theorem proving, Addition of fault-
tolerance.

1 Introduction

Fault-tolerance is a necessity in most computer systems and, hence, one needs
strong assurance of fault-tolerance properties of a given system. Mechanical ver-
ification of such systems is one way to get a strong form of assurance. The re-
lated work in the literature has focused on verification of concrete fault-tolerant
programs. For example, Owre et al [1] present a survey on formal verification
of a fault-tolerant digital-flight control system. Mantel and Gärtner verify the
correctness of a fault-tolerant broadcast protocol [2]. Qadeer and Shankar [3] me-
chanically verify the self-stability property of Dijkstra’s mutual exclusion token

1 This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF grant EIA-0130724, and a
grant from Michigan State University.

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 36–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mechanical Verification of Automatic Synthesis of Fault-Tolerant Programs 37

ring algorithm [4]. Kulkarni, Rushby, and Shankar [5] verify the same algorithm
by exploiting the theory of detectors and correctors [6].

While the verifications performed in [1, 2, 3, 5] enable us to gain confidence
in the programs being verified, it is difficult to extend these verifications to
other programs. A more general approach, therefore, is to verify algorithms that
generate fault-tolerant programs.

With this motivation, in this paper, we focus on the problem of verifying
algorithms that synthesize fault-tolerant programs. With such verification, we
are guaranteed that all the programs generated by the synthesis algorithms in-
deed satisfy their fault-tolerance requirements. Towards this end, we verify the
transformation algorithms presented by Kulkarni and Arora [7,8] using the PVS
theorem prover. The algorithms in [7,8], focus on the problem of transforming a
given fault-intolerant program to a fault-tolerant program. To verify these algo-
rithms, first, we model a framework for fault-tolerance in PVS. This framework
consists of definitions for programs, specifications, faults, and levels of fault-
tolerance. Then, we verify that the programs synthesized by the algorithms are
indeed fault-tolerant. By this verification, we ensure that any program synthe-
sized by these algorithms is also correct by construction and, hence, there is no
need to verify the individual synthesized programs.

We note that the algorithms in [7,8], are the basis for their extensions to deal
with simultaneous occurrence of multiple faults from different types [9] and for
synthesizing distributed programs [10, 11]. Thus, the specification and verifica-
tion of transformation algorithms in [7,8] is reusable in developing specification
and verification of algorithms in [10, 11, 9]. Since fixpoint calculation is at the
heart of the synthesis algorithms, we also develop a library for fixpoint calcu-
lations on finite sets in PVS. This library is reusable for other purposes that
involve fixpoint calculations as well 2.

Contributions of the paper. The contributions of this paper are as follows:
(1) We verify the correctness of the synthesis algorithms in [7,8]. Thus, not only
we ensure their correctness but also we guarantee that any program synthesized
by the algorithms is also correct by construction. (2) We provide a foundation
for formal specification and verification of later research work that are extensions
of [7, 8]. (3) We develop a reusable library in PVS for fixpoint calculations on
finite sets.

Organization of the paper. The organization of the paper is as follows:
We provide the formal definitions of programs, specifications, faults, and fault-
tolerance in Section 2. Using these definitions, we formally state the problem of
mechanical verification of synthesis of fault-tolerant programs in Section 3. In
Section 4, first, we develop a theory for fixpoint calculations on finite sets. Then,
based on the definitions in Section 2 and our fixpoint calculation library, we
formally specify the synthesis algorithms proposed in [7,8] in PVS. In Section 5,

2 The URL http://www.cse.msu.edu/∼borzoo/pvs contains the PVS specifications
and formal proofs.

38 S.S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir

we present the verification of algorithms. Finally, we make concluding remarks
and discuss future work in Section 7.

2 Modeling a Fault-Tolerance Framework

In this section, we give formal definitions for programs, specifications, faults, and
fault-tolerance. The programs are specified in terms of their state space and their
transitions. The definition of specifications is adapted from Alpern and Schneider
[12]. The definitions of faults and fault-tolerance are adapted from Arora and
Gouda [13] and Kulkarni [6]. We also discuss how we model the definitions in
PVS in an abstract way, so that they are independent of any particular program.
We note that in describing this model, due to space limitation, we omit the proofs
of certain simple judgements and lemmas

2.1 Program

A program p is a finite set of transitions in its state space. In our framework,
the notion of state is abstract. Hence, in PVS, we model state by an UNINTER-
PRETED TYPE 3. Likewise, a transition is modeled as an ordered pair of states,
which is also an uninterpreted type. We also assume that the number of states
and transitions are finite. The state space of p, Sp, is the set of all possible states
of p. In PVS, we model the state space by the finite fullset over states. We de-
fine the following JUDGEMENT to avoid getting repetitive type-checking proof
obligations from the PVS type-checker:

Judgement 2.1: Sp has type of finite set.
We model program, p, by a subset of Sp×Sp. A state predicate of p is a subset of
Sp. In PVS, we model a state predicate, StatePred, as a finite set over states. The
type Action denotes finite sets of transitions. A state predicate S is closed in the
program p iff for all transitions (s0, s1) in p, if s0 ∈ S then s1 ∈ S. Hence, we de-
fine closure as follows: closed(S, p) = (∀s0, s1 | (s0, s1)∈p : (s0∈S ⇒ s1∈S)). A
sequence of states, 〈s0, s1, ...〉, is a computation of p iff any pair of two consecutive
states is a transition in p. We formalize this by a DEPENDENT TYPE4 as follows:

Computation(p) : TY PE =
{c : sequence[state] | (∀i | i ≥ 0 : (ci, ci+1) ∈ p)}

where sequence[state] : N → state and p is any finite set of type Action. A
computation prefix is a finite sequence of states, where the first j steps are
transitions in the given program:

3 Uninterpreted types support abstraction by providing a means of introducing a type
with a minimum of assumptions on the type and imposing almost no constraints on
an implementation of the specification [14].

4 In PVS specification language, a type may be defined in terms of an earlier defined
type [14].

Mechanical Verification of Automatic Synthesis of Fault-Tolerant Programs 39

prefix(p, j) : TY PE = {c : sequence[state] | (∀i | i < j : (ci, ci+1) ∈ p)}
We deliberately model computation prefixes by infinite sequences of which

only a finite part is used. This is due to the fact that using finite sequences in PVS
is not very convenient and the type checker generates several proof obligations
whenever finite sequences are used.

The projection of program p on state predicate S consists of transitions of p
that start in S and end in S, denoted as p | S. Similar to the notion of program,
we model projection of p on S by a finite set of transitions: p | S = {(s0, s1) |
(s0, s1) ∈ p ∧ (s0, s1 ∈ S)}.

2.2 Specification

The specification consists of a safety specification and a liveness specification. The
safety specification is specified as a set of bad transitions. Thus, for program p,
its safety specification is a subset of Sp × Sp. Hence, we can model the safety
specification by a finite set of transitions, called spec. We explain the liveness
issue in Section 2.3.

Given program p, state predicate S, and specification spec, we say that p
satisfies its specification from S iff (1) S is closed in p, and (2) every computation
of p that starts in a state where S is true, does not contain a transition in spec.
If p does not satisfy its specification from S, we say p violates its specification.
If p satisfies specification from S and S ={}, we say that S is an invariant of p.
Since we do not deal with a specific program, in PVS, we model an invariant by
an arbitrary state predicate that is closed in p.

2.3 Faults and Fault-Tolerance

The faults that a program is subject to are systematically represented by a
finite set of transitions. A class of fault f for program p is a subset of Sp×Sp. A
computation of program p in presence of faults f is an infinite sequence of states
where either a transition of p or a transition of f occurs at every step. Hence, we
model computation of program in presence of faults as c : Computation(p ∪ f).

We say that a state predicate T is an f -span (read as fault-span) of p from S
iff the following two conditions are satisfied: (1) S ⇒ T , and (2) T is closed in
p ∪ f . Thus, we model fault-span in PVS as follows: FaultSpan(T, S, p ∪ f) =
((S ⊆ T) ∧ (closed(T, p ∪ f))). Observe that for all computations of p that start
at states where S is true, T is a boundary in the state space of p up to which
(but not beyond which) the state of p may be perturbed by the transitions in f .
Hence, we define the different levels of fault-tolerance based on the behavior of
the fault-tolerant program in its fault-span.

We say that p is failsafe f -tolerant (read as fault-tolerant) to its specification
from S iff two conditions hold: (1) p satisfies its specification from S, and (2) there
exists T such that T is an f -span of p from S, and no prefix of a computation
of p ∪ f that starts in T has a transition in spec.

We say that p is masking f -tolerant (read as fault-tolerant) to its specification
from S iff the following conditions hold: (1) p satisfies its specification from S,

40 S.S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir

and (2) there exists T such that T is an f -span of p from S, no prefix of a
computation of p ∪ f that starts in T has a transition in spec, and every
computation of p ∪ f that starts from a state in T contains a state of S.

In [7,8], the liveness specification is modeled implicitly. Specifically, for fail-
safe fault-tolerance, the requirement is that the fault-tolerant program does not
deadlock in the absence of faults. And, for masking fault-tolerance, the require-
ment is that the fault-tolerant program does not deadlock even in the presence
of faults. A program deadlocks in state s0 iff ∀s1 | s1 ∈ S : (s0, s1) /∈ p.

There is an additional type of tolerance in [7,8], nonmasking, where after the
occurrence of faults, eventually the program recovers to its invariant. However,
the safety specification may be violated during recovery. We omit the discussion
of nonmasking tolerance, as the algorithm for this case is straightforward; it
suffices to add one step recovery from all states reached in the presence of faults.
However, in [15], the author presents formal specification and verification of
synthesis of nonmasking fault-tolerance.

3 Problem Statement

In this section, we recall (from [7,8]) the problem of automatic synthesis of fault-
tolerance. As described in Section 2, the fault-intolerant program p is specified
in terms of its state space Sp, its transitions, p, and its invariant, S. The spec-
ification provides a set of bad transitions (that should not occur in program
computation). The faults, f , are specified in terms of a finite set of transitions.
Likewise, the fault-tolerant program p′ is specified in terms of its state space Sp,
its set of transitions, say p′, its invariant, S′, its specification, spec, and the type
of fault-tolerance it provides.

The transformation problem is as follows (this definition will be instantiated
in the obvious way depending upon the level of tolerance):

The Transformation Problem
Given p, S, spec, and f such that p satisfies spec from S.
Identify p′ and S′ such that:

S′ ⊆ S
(p′|S′) ⊆ (p|S′)
p′ is f -tolerant to spec from S′

We now explain the reasons behind the first two conditions briefly:

– If S′ contains states that are not in S then, in the absence of faults, p′

will include computations that start outside S and hence, p′ contains new
behaviors in the absence of faults. Therefore, we require that S′ ⊆ S.

– Regarding the transitions of p and p′, we focus only on the transitions of
p′|S′ and p|S′. If p′|S′ contains a transition that is not in p|S′, p′ can use
this transition in a new computation in the absence of faults and hence, we
require that p′|S′ ⊆ p|S′.

Mechanical Verification of Automatic Synthesis of Fault-Tolerant Programs 41

Soundness. An algorithm for the transformation problem is sound iff for any
given input, its output, namely p′ and S′, satisfies the transformation problem.

Our goal is to mechanically verify that the proposed algorithms in [7,8] are
indeed sound. In other words, based on the definitions in Section 2, we show
that the algorithms in [7,8] satisfy the transformation problem.

4 Description and Specification of Synthesis Algorithms

In this section, we describe the synthesis algorithms in [7,8] and explain how we
formally specify them in PVS. As mentioned in Section 2, we are interested in two
levels of fault-tolerance: failsafe and masking. The essence of adding failsafe and
masking fault-tolerance to a given fault-intolerant program is recalculation of the
invariant of the fault-intolerant program which in turn involves calculating the
fixpoint of a formula. More specifically, we calculate fixpoint of a given formula
to (i) calculate the set of states from where safety may be violated by faults
alone; (ii) remove the set of states from where closure of fault-span is violated
by fault transitions, and (iii) remove deadlock states that occur in a given set of
states.

The μ−calculus theory of the PVS prelude contains general definitions of the
standard fixpoint calculation, however, it is not convenient to use that theory
in the context of our problem. This is due to the fact that this library focuses
on infinite sets and is not specialized to account for the properties of functions
used in the synthesis of fault-tolerant programs. By contrast, we find that by
customizing the theory to the properties of functions used in the synthesis of
fault-tolerant programs, we can simplify the verification of the synthesis algo-
rithms. Hence, in Section 4.1, we develop a theory for fixpoint calculations on
finite sets that is reusable elsewhere. Based on the definitions in Section 4.1, we
model the synthesis algorithms for addition of failsafe and masking tolerance in
sections 4.2 and 4.3 respectively.

4.1 Specification of Fixpoint Calculation for Finite Sets

In this section, we describe how we formally specify fixpoint calculation for
finite sets in PVS. A fixpoint of a function f : X → X is any value x0 ∈ X such
that f(x0) = x0. In other words, further application of f does not change its
value. A function may have more than one fixpoint. The least upper bound of
fixpoints is called the smallest fixpoint and the greatest lower bound of fixpoints
is called the largest fixpoint. In our context, the functions whose fixpoint is
calculated demonstrate certain characteristics. Hence, as described above, we
focus on customizing the fixpoint theory based on these characteristics.

In the context of finite sets, domain and range of f , X, are both finite sets of
finite sets. Throughout this section and in Section 5.1, the variables i, j, k range
over natural numbers. The variable x is any finite set of any uninterpreted type.
Variable b is any member of such finite set.

One type of functions used in synthesis of fault-tolerance is a decreasing
function for which the largest fixpoint is calculated. Towards this end, we start

42 S.S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir

from an initial set and at each step of calculation, we remove a subset of the
initial set that has a certain property. Thus, the type DecFunc is the type of
functions g, such that g : {A : finiteset} → {B : finiteset | B ⊆ A}. In
other words, for all finite sets x, g(x) ⊆ x. With such a decreasing function,
we define Dec(i, x)(g) to formalize the recursive behavior of the largest fixpoint
calculation. Dec(i, x)(g) keeps removing the elements of the initial set, x, that
the function g of type DecFunc returns at every step:

Dec(i, x)(g) =
{
Dec(i− 1, x)(g)− g(Dec(i− 1, x)(g)) if i = 0;
x if i = 0

Finally, we define the largest fixpoint as follows:

LgFix(x)(g) = {b | ∀k : b ∈ Dec(k, x)(g))}
Our goal is to prove the following property of largest fixpoint based on our def-
initions: g(LgFix(x)(g)) = ∅.
Remark. The above definition of fixpoint is somewhat non-traditional. We find
that this definition assists in verification of the synthesis algorithms. For ex-
ample, we apply this fixpoint calculation for removing deadlock states where
g(x) denotes the deadlock states in set x. After calculating the largest fix-
point, we need to show that no deadlock states remain in the set x. Thus,
we should show that g(LgFix(x)) = ∅. Moreover, if g(LgFix(x)) = ∅ then
∀i : Dec(i, LgF ix(x)) = LgFix(x).

The second type of fixpoint used in synthesis of fault-tolerance is an increasing
function for which the smallest fixpoint is calculated. Towards this end, we start
from an initial set and at each step, we add a set that is disjoint from the
initial set. Thus, the type IncFunc is the type of functions r such that r : {A :
finiteset} → {B : finiteset | A ∩ B = ∅}. In other words, for all finite sets
x, x ∩ r(x) = ∅. With such an increasing function, we define Inc(i, x)(r) to
formalize the recursive behavior of the smallest fixpoint calculation. Inc(i, x)(r)
keeps adding elements to the initial set, x, that the function r of type IncFunc
returns at every step:

Inc(i, x)(r) =
{
Inc(i− 1, x)(r) ∪ r(Inc(i− 1, x)(r)) if i = 0;
x if i = 0

Finally, we define the smallest fixpoint as follows:
SmFix(x)(r) = {b | ∃k : b ∈ Inc(k, x)(r)}

Our goal is to prove the following property of smallest fixpoint:

r(SmFix(x)(r)) = ∅

4.2 Specification of the Synthesis of Failsafe Tolerance

The essence of adding failsafe tolerance is to remove the states from where safety
may be violated by one or more fault transitions. We reiterate the algorithm
Add failsafe (from [7,8]) in Figure 1.

Throughout this section and Sections 4.3, 5.2 and 5.3, the variables x, s, s0, s1

range over states. The variables i, j, k,m range over natural numbers. The vari-
able X ranges over StatePred and the variable Z ranges over Action. As defined

Mechanical Verification of Automatic Synthesis of Fault-Tolerant Programs 43

in Section 3, p and p′ are respectively fault-intolerant and fault-tolerant pro-
grams, S and S′ are respectively invariants of fault-intolerant and fault-tolerant
programs, T is fault-span, f is the finite set of faults, and spec is the finite set
of bad transitions that represents the safety specification.

Add failsafe(p, f : transitions, S : state predicate, spec : specification)
{

ms := smallestfixpoint(X = X ∪ {s0 | (∃s1 :
(s0, s1) ∈ f) ∧ (s1 ∈ X ∨ (s0, s1) violates spec) };

mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) };
S′ := ConstructInvariant(S − ms, p−mt);
if (S′ ={}) declare no failsafe f-tolerant program p′ exists;

else p′ :=ConstructTransitions(p−mt, S′)
}

ConstructInvariant(S : state predicate, p : transitions)
// Returns the largest subset of S such that computations of p

within that subset are infinite
return largestfixpoint(X = (X ∩ S) − {s0 | (∀s1 : s1∈X : (s0, s1) /∈ p)}

ConstructTransitions(p : transitions, S : set of states)
{ return p−{(s0, s1) : s0∈S ∧ s1 �∈ S} }

Fig. 1. The synthesis algorithm for adding failsafe tolerance

In order to construct ms, the set of states from where safety can be vio-
lated by one or more fault transitions, first, we define msInit as the finite set of
states from where safety can be violated by a single fault transition. Note that
(s0, s1) ∈ spec means violation of the safety specification. Formally,

msInit : StatePred = {s0 | ∃ s1 : (s0, s1) ∈ f ∧ (s0, s1) ∈ spec}
Now, we define a function, RevReachStates, that calculates a state predicate from
where states of another finite set, rs, are reachable by fault transition. Formally,

RevReachStates(rs : StatePred) : StatePred =
{s0 | ∃ s1 : s1 ∈ rs ∧ (s0, s1) ∈ f ∧ s0 /∈ rs}

The following judgement helps the PVS type checker in discharging later proof
obligations:

Judgement 4.1 : RevReachStates has type of IncFunc.
We use the definition of smallest fixpoint in Section 4.1 to define the state pred-
icate ms. Towards this end, we instantiate the initial set with msInit, and the r
function with RevReachStates :

ms : StatePred = SmFix(msInit)(RevReachStates)

Then, we define the finite set of transitions, mt, that must be removed from p.
These transitions are either transitions that may lead a computation to reach a
state in ms or transitions that directly violate safety:

mt : Action = {(s0, s1) | (s1 ∈ ms ∨ (s0, s1) ∈ spec)}
The algorithm Add failsafe removes the set ms from the invariant of the fault-
intolerant program S. However, this removal may create deadlock states. The set

44 S.S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir

of deadlock states in ds of program Z is denoted as follows:

DeadlockStates(Z)(ds : StatePred) : StatePred =
{s0 | s0 ∈ ds : (∀s1 | s1 ∈ ds : (s0, s1) /∈ Z)}

Judgement 4.2: DeadlockStates(Z) has type of DecFunc.
We construct the invariant of the fault-tolerant program by removing the

deadlock states to ensure that computations of fault-tolerant program are in-
finite (cf. Section 2.3). In general, we define ConstructInvariant using largest
fixpoint of a finite set X, that removes deadlock states of a given state predicate
X:

ConstructInvariant(X,Z) : StatePred = LgFix(X)(DeadlockStates(Z))
The formal definition of the invariant of fault-tolerant program is as follows:

S′ : StatePred = ConstructInvariant(S −ms, p−mt)

Finally, we construct the finite set of transitions of fault-tolerant program by
removing the transitions that violate the closure of S′:

p′ : Action = p−mt−{(s0, s1) | ((s0, s1) ∈ (p−mt)) ∧ (s0 ∈ S′∧s1 /∈ S′)}

4.3 Specification of the Synthesis of Masking Tolerance

In this section, we describe how we formally specify the addition of masking
fault-tolerance to a given program p. We reiterate the algorithm Add masking
(from [7, 8]) in Figure 2. Note that we extensively reuse the formal definitions
developed in Section 4.2 to model Add masking.

Add masking(p, f : transitions, S : state predicate, spec : specification)
{

ms := smallestfixpoint(X = X ∪ {s0 | (∃s1 :
(s0, s1) ∈ f) ∧ (s1 ∈ X ∨ (s0, s1) violates spec) };

mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) };
S1 := ConstructInvariant(S − ms, p−mt);
T1 := true−ms;
repeat

T2, S2 := T1, S1;
p1 := p|S2 ∪ {(s0, s1) : s0 �∈S2 ∧ s0∈T2 ∧ s1∈T2}−mt;
T1 := ConstructFaultSpan(T2 − {s : S1 is not reachable from s in p1 }, f);
S1 := ConstructInvariant(S2 ∧ T1, p1);
if (S1 ={} ∨ T1 ={})

declare no masking f-tolerant program p′ exists;
exit

until (T1 =T2 ∧ S1 =S2);

For each state s : s∈T1 :
Rank(s) = length of the shortest computation prefix of p1

that starts from s and ends in a state in S1;
p′ := {(s0, s1) : ((s0, s1)∈p1) ∧ (s0∈S1 ∨ Rank(s0)>Rank(s1))};
S′ := S1;
T ′ := T1

}
ConstructFaultSpan(T : state predicate, f : transitions)
// Returns the largest subset of T that is closed in f .
{

return largestfixpoint(X = (X ∩ T) − {s0 : (∃s1 : (s0, s1) ∈ f ∧ s1 �∈X)})
}

Fig. 2. The synthesis algorithm for adding masking tolerance

Mechanical Verification of Automatic Synthesis of Fault-Tolerant Programs 45

As mentioned in Section 2, in addition of masking fault-tolerance, the require-
ment for preserving the liveness properties of a program is that the fault-tolerant
program does not deadlock even in the presence of faults and it should recover
to the invariant after a finite number of steps while preserving safety. Hence, we
assume that the number of occurrences of faults in a computation is finite by an
axiom in our PVS specification. This is the only axiom used in our work.

Axiom 4.3 : ∀p : ∀c(p ∪ f) : (∃ n | n ≥ 0 : (∀j | j ≥ n : (cj , cj+1) ∈ p)).
The main difficulty in formalizing Add masking algorithm is modeling the

repeat-until loop (cf. Figure 2).We model the algorithm in three phases: ini-
tialization, identifying the loop invariant, and termination conditions. This loop
invariant includes two properties (1) the intermediate invariant at the start of
the loop is a subset of S, the invariant of the fault-intolerant program, and (2)
the intersection of ms and the intermediate fault-span at the start of the loop
is the empty set. Hence, in Section 5.3, to verify the algorithm, first, we show
these properties for the initial guess of invariant and fault-span. Then, we show
that if these properties hold at the start of an iteration, they hold at the start
of the subsequent iteration as well.

Initialization: To model the part of Add masking before the loop, we define
Sinit and Tinit as follows:

Sinit : StatePred = ConstructInvariant(S −ms, p−mt)
Tinit : StatePred = Sp −ms

The loop invariant: Now, we model the repeat-until loop. The value of the
intermediate invariant (respectively, fault-span) at the start of the loop is S2

(respectively, T2). We recalculate the invariant and fault-span in the loop. Let
the new values be S1 and T1 respectively. Now, we define S1 and T1 in terms of
(arbitrary predicates) S2 and T2.
1. We define an intermediate program p1 as follows. We require that for a tran-

sition (s0, s1) in p1, the following conditions are satisfied: (1) if s0 ∈ S2 then
s1 ∈ S2, (2) if s0 ∈ T2 then s1 ∈ T2. Moreover, p1 does not contain any
transition in mt. Formally

S2 : StatePred
T2 : StatePred
p1 : Action = (p | S2 ∪ TS)−mt, where
TS : StatePred = {(s0, s1) | s0 /∈ S2 ∧ s0 ∈ T2 ∧ s1 ∈ T2}

2. To formally specify construction of T1, we first define the finite set of states
from where closure of T2 may be violated. Formally,

TNClose(X : StatePred) : StatePred =
{s0 | ∃s1 : s0 ∈ X ∧ (s0, s1) ∈ f ∧ s1 /∈ X}.

Then, we define the finite set of states from where S2 is reachable. Formally,
TReach : StatePred = {s | s ∈ T2 ∧ reachable(S2, T2, p1, s)} where
reachable(S2, T2, p1, s) : StatePred =

∃c(p1) : ((s ∈ T2) ∧ (s = c0) ∧ ∃j : cj ∈ S2).

46 S.S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir

We now define ConstructFaultspan as the largest subset of TReach that is
closed in f . Formally,

T1 = ConstructFaultspan(TReach), where
ConstructFaultspan(X : StatePred) = LgFix(X)(TNClose)

3. Since S1 is a subset of T1, we model the recalculation of invariant as follows:

S1 : StatePred = ConstructInvariant(S2 ∩ T1)(p1)

Termination of the loop: We formalize the termination condition of the
loop in the verification phase. More specifically, we prove that provided (S1 =
S2) ∧ (T1 = T2) is true, p1 is failsafe and provides potential recovery from every
state in fault-span.

5 Verification of the Synthesis Algorithms

In this section, we verify the soundness of the synthesis algorithms based on the
formal specification in Section 4.

5.1 Verification of the Fixpoint Theory

In order to verify the soundness of the synthesis algorithms, we first prove the
properties of fixpoint calculations (cf. Section 4.1) in theorems 5.4 and 5.5. Due
to space limitation, we only state the theorems and we refer the reader to [15]
for detailed formal proofs.

Theorem 5.4: Application of function g on the largest fixpoint of a finite set
returns the empty set. Formally, g(LgFix(x)(g)) = ∅.

Theorem 5.5: r(SmFix(x)(r)). = ∅

5.2 Verification of the Synthesis of Failsafe Tolerance

In order to verify the soundness of Add failsafe algorithm, we now prove that
the synthesized program, p′, satisfies the three conditions of the transformation
problem stated in Section 3. More specifically, in Theorems 5.7 and 5.8, we prove
the correctness of the first two conditions of the transformation problem. Then,
in the remaining theorems, we show that the program synthesized by Add failsafe
is indeed failsafe fault-tolerant.

Observation 5.6: S′ ∩ms = ∅.
Proof. After expanding the definition of S′, ConstructInvariant, and LgFix,
we need to prove: ∀x : (∀k : x ∈ Dec(k, S −ms)(DeadlockStates(p−mt)) =⇒
x /∈ ms). By instantiating k with 0, propositional simplification discharges the
observation.

Theorem 5.7: S′ ⊆ S.
Proof. Our strategy to prove this theorem is based on the fact that S′ is
made out of S by removing some states. After expanding the definition of S′,

Mechanical Verification of Automatic Synthesis of Fault-Tolerant Programs 47

ConstructInvariant, and LgFix, we need to prove:
∀k : (∀x : (x ∈ Dec(k, S −ms)(DeadlockStates(p−mt)) =⇒ x ∈ S)).

Towards this end, first, we instantiate k with zero. Then, after expanding the
definitions, we need to prove ∀x : (x ∈ S − ms =⇒ x ∈ S), which is trivially
true.

Theorem 5.8: p′|S′ ⊆ p|S′.

Theorem 5.9: S′ is closed in p′. Formally, closed(S′, p′).
Lemma 5.10: ∀(s0, s1) : ((s0, s1) ∈ f ∧ s1 ∈ ms) =⇒ s0 ∈ ms.
Proof. The GRIND strategy discharges this lemma and theorems 5.8 and 5.9.

Lemma 5.11: DeadlockStates(p−mt)(S′) = ∅.
Proof. First, we expand the definitions of S′ and ConstructInvariant. Then,
we need to prove: DeadlockDtates(p−mt)(LgFix(S−ms)(DeadlockStates(p−
mt))) = ∅. Using Theorem 5.4, we instantiate x with LgFix(S−ms), and g with
DeadlockStates(p−mt) to complete the proof.

Theorem 5.12: All computations of p′ that start from a state in S′ must be
infinite. Formally, DeadlockStates(p′)(S′) = ∅.
Proof. In Lemma 5.11, we showed that all computations of p −mt that start
from a state in S′ are infinite. Now we need to show that all the computations
of p −mt after removing the transitions that violate the closure of S′ are still
infinite. Obviously, removal of such transitions does not have anything to do with
deadlock states, because the source of a transition that violates the closure must
have been removed during the removal of deadlock states. Hence, the verification
is only a sequence of expansions and propositional simplifications.

Remark. Note that Theorem 5.12 is one of the instances where formalization
of the fixpoint in Section 4.1 is used. More specifically, DeadlockStates(p′)(S′)
denotes the deadlock states in S′ using program p′. We repeatedly remove these
deadlock states. Hence, once the fixpoint is reached, there are no deadlock states.

Lemma 5.13: In the presence of faults, no computation prefix of failsafe toler-
ant program that starts from a state in S′, reaches a state in ms. Formally,

∀j : (∀c : prefix(p′ ∪ f, j) | c0 ∈ S′ : ∀k | k < j : ck /∈ ms).

Proof. After eliminating the universal quantifier on c(p′ ∪ f) by skolemiza-
tion, we proceed by induction on k. In the base case, k = 0, we need to prove
c0 ∈ S′ =⇒ c0 /∈ ms. The base case can be discharged using Observation 5.6. In
induction step, we need to prove (∀n | n < j : (cn, cn+1) ∈ p′ ∪ f) =⇒ (∀k | k <
j : ck /∈ ms ⇒ ck+1 /∈ ms). From Lemma 5.10, we know that if the destination
of a fault transition , (s0, s1), is in ms, then the source, s0, is in ms as well. This
means that if s0 is not in ms then s1 is not in ms either. We know that ck /∈ ms
and, hence, based on Lemma 5.10, ck+1 /∈ ms.

Theorem 5.14: Any prefix of any computation of failsafe tolerant program in
the presence of faults that starts in S′ does not violate safety. Formally,

48 S.S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir

∀j : ∀(c : prefix(p′ ∪ f), j | c0 ∈ S′) : ∀k|k < j : (ck, ck+1) /∈ spec.
Proof. In Lemma 5.13, we proved that no computation prefix of p′ ∪ f that
starts from a state in S′ never reaches a state in ms. In addition, p′ does not
contain any transition that is in spec. Thus, a computation prefix of p′ ∪ f that
starts from a state in S′ does not contain a transition in spec.

5.3 Verification of the Synthesis of Masking Tolerance
We verify the algorithm Add masking based on the three phases that we modeled
the algorithm in Section 4.3. More specifically, first, we show these properties for
the initial guess of invariant and fault-span. Then, we show that if these prop-
erties hold at the start of an iteration, they hold at the start of the subsequent
iteration as well:

Properties of initial values for the invariant and fault-span: Similar to
Observation 5.6 and Theorem 5.7, we can prove the following theorems; note
that these theorems show that the initial values of the invariant and fault-span
satisfy the loop invariant:
Observation 5.15: Tinit ∩ms = ∅.
Theorem 5.16: Sinit ⊆ Tinit.

Theorem 5.17: Sinit ⊆ S.

Properties of the loop invariant: Similar to the verification of Add failsafe,
we prove that the synthesized masking tolerant program satisfies the transfor-
mation problem by stating and proving a series of theorems and intermediate
lemmas. First, we show the loop invariant, i.e., we show that if S2 and T2 satisfy
the loop invariant then so do S1 and T1 (cf. Theorem 5.18). Then, we state and
prove additional theorems about S1 and T1. Proofs of Theorems 5.18-5.21 are
similar to the proofs of corresponding theorems in the verification of failsafe.
Hence, we omit these proofs.

Theorem 5.18: ((T2 ∩ms = ∅) ⇒ (T1 ∩ms = ∅)) ∧ ((S2 ⊆ S) ⇒ (S1 ⊆ S))

Theorem 5.19: S1 ⊆ T1.

Theorem 5.20 : (p1|S2 ⊆ p|S2) ⇒ (p1|S1 ⊆ p|S1).

Theorem 5.21: DeadlockStates(p1)(S1) = ∅.
Theorem 5.22: The recalculated fault-span is closed in f . Formally, closed(T1, f).

Proof: The proof is similar to proof of Lemma 5.11. We know that
T1 = ConstructFaultSpan(...) = LgFix(...). Using Theorem 5.4, in the defini-
tion of LgFix, we instantiate X with TReach, and g with TNClose to complete
the proof.

Properties at the termination of the loop: As mentioned in Section 4.3,
we prove that provided (S1 = S2) ∧ (T1 = T2) is true, p1 is failsafe and provides
potential recovery from every state in fault-span.

Theorem 5.23: (S1 = S2) ⇒ closed(S1, p1).

Mechanical Verification of Automatic Synthesis of Fault-Tolerant Programs 49

Proof: Based on the fact that S2 is closed in p1 by construction, when S1 = S2,
p1 is closed in S1 as well. Hence, by replacing S1 by S2, we complete the
proof.

Theorem 5.24: Any prefix of any computation of the masking tolerant program
in the presence of faults does not violate safety. Formally, ((S1 = S2) ∧ (T1 =
T2)) ⇒ ∀j : (∀c : prefix(p1 ∪ f, j) | c0 ∈ T1 : ∀k | k < j : (ck, ck+1) /∈ spec).
Proof: Proof is similar to proof of Theorem 5.14.

Theorem 5.25: (T1 = T2) ⇒ closed(T1, p1 ∪ f).
Proof: Based on the fact that T2 is closed in p1 by construction, when T1 = T2,
T1 is closed in p1 as well. From Theorem 5.22, we also know that closed(T1, f).
Thus, using Theorem 5.22 and by replacing T1 by T2, we complete the proof.

Theorem 5.26: After termination of the loop, for any state in fault-span, T1,
there exists a computation of p1 that starts from that state and reaches the
invariant, S1. Formally,

((S1 = S2) ∧ (T1 = T2)) ⇒ (∀s | s ∈ T1 : reachable(S1, T1, p1, s)).
Proof: First, we use Axiom 4.3 to show that there exists a suffix for every
computation of p1 ∪ f that contains no transition in f . After replacing T1

and S1 by T2 and S2 in the deducing part, we need to prove ∀s | s ∈ T1 :
reachable(S2, T2, p1, s). By expanding the definitions of T1, ConstructFaultSpan,
and LgFix respectively, we need to prove:

∀k : (s ∈ Dec(k, TReach)(TClose)) =⇒ reachable(S2, T2, p1, s)
By instantiation of k with 0, the GRIND strategy discharges the theorem.

Finally, the fault-tolerant program, p′ is obtained by removing cycles in p1

that occur in states in T1 − S1. Hence, we can easily extend the theorems 5.20-
5.25 to show that they hold for program p′ as well. Moreover, in Theorem 5.26,
the fact that the shortest path from a state in T1 to a state in S1 is preserved, and
p′ does not create deadlock states can be used to show that every computation of
p′ eventually reaches a state in S1. For reasons of space, we omit the discussion
of these proofs.

6 Discussion

Related work. In [16], Emerson and Clarke propose an algorithm that synthe-
sizes a program from its temporal logic specification. Since then, other algorithms
have been proposed in the literature [17,18,19]. In the previous work prior to [7],
the input to synthesis algorithms is either an automaton or temporal logics spec-
ification and any modification in the specification requires synthesizing the new
program from scratch. In contrast, the algorithms in [7] reuse the fault-intolerant
program to synthesize the fault-tolerant version. This reusability helps to im-
prove the time complexity to some extent. Thus, the algorithms proposed in [7]
seem to be suitable candidates for practical implementation purposes. In [20], the

50 S.S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir

authors introduce a set of heuristics for synthesizing distributed fault-tolerant
programs in polynomial time. Based on the heuristics, Ebnenasir and Kulkarni
have developed a tool for synthesizing fault-tolerant programs [11]. Therefore,
by formal verification of the algorithms in [7], we gain more confidence on their
practical implementations as well.
Advantages of mechanical verification of algorithms for the synthe-
sis of fault-tolerant algorithms. Fault-tolerant systems are often in need of
strong assurance. Mechanical verification is a reliable way to ensure that the
fault-tolerance requirements of a system are met. We find that verification of
algorithms for synthesis of fault-tolerance is a systematic and abstract way for
formal verification of fault-tolerance.

High level of abstraction. The algorithms presented in [7] make no assump-
tions about the properties of the system, except that they have finite state
space. This high level of abstraction enables the algorithms to be applicable
to synthesize both finite state hardware and software systems. Our focus on
formal verification of such abstract algorithms makes it possible to extend our
work to verify other algorithms that are based on the ones in [7] for any system
regardless of the platform and architecture. In addition, having the developed
specification and verification in this paper, we can easily verify the extensions of
the algorithms in [10,20,9] by reusing the specification developed in this paper.

Correctness of synthesized programs. Another advantage of verifying a syn-
thesis algorithm rather than individual fault-tolerant programs is to guarantee
that any synthesized program by the algorithm is correct by construction. This
advantage makes us free from verification of individual synthesized programs.

Reusability of formal proofs. Although most of the related work on formal
verification of fault-tolerance [1,2,3,5] provide confidence in correctness of their
concerns, reusing the formal proof of one, in verification of others is not quite
convenient. Manual reusability of formal proofs is the first step to develop proof
strategies. As an illustration, in Section 5.3, we showed how we manually reused
the formal proofs of Add failsafe to verify the soundness of Add masking.

7 Conclusion and Future Work

In this paper, we focused on the problem of verifying transformation algorithms
that generate fault-tolerant programs that are correct by construction. We con-
sidered two types of fault-tolerance properties, failsafe and masking. We would
like to note that we have also verified the algorithm for synthesizing nonmask-
ing fault-tolerant programs where the program recovers to states from where its
specification is satisfied although safety may be violated during recovery [15].

The algorithms verified in this paper synthesize programs in the high atom-
icity model, where a process can read and write all variables in an atomic step.
In [7,8], authors have presented a non-deterministic algorithm for designing dis-
tributed programs. We have also verified that algorithm using PVS [15].

Since we focus on verification of the transformation algorithms, we note that
our results ensure that the programs synthesized using these algorithms indeed

Mechanical Verification of Automatic Synthesis of Fault-Tolerant Programs 51

satisfy their required fault-tolerance properties. Thus, our approach is more gen-
eral than verifying a particular fault-tolerant program. Also, to verify the algo-
rithms that synthesize failsafe and masking fault-tolerant programs, we devel-
oped a fixpoint library for finite sets. This library is expected to be applicable
elsewhere.

In a broader context, the verification of the algorithms considered in this
paper will assist us in verifying several other transformations. For example, in
[9], the authors extend the algorithms in [7, 8] to deal with multiple classes of
faults. The algorithms in [7, 8] have also been used to synthesize fault-tolerant
distributed programs. As an illustration, we note that the algorithms in [20,10,
11] that are extensions of the algorithms in [7, 8] have been used to synthesize
solutions for several fault-tolerant programs including, Byzantine agreement,
consensus, token ring, and alternating bit protocol. Thus, the theories developed
in this paper are directly applicable to verify the transformation algorithms
in [20,10,11,9] as well.

Our experience shows that significant number of proofs were reused. For in-
stance, we manually reused proofs of failsafe tolerance to verify the soundness
of synthesized masking tolerant programs. We expect to reuse many of the the-
orems and proofs in future verifications as well. Therefore, as a future work, one
can develop proof strategies based on our experience in reusability of proofs.

References

1. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107–125, February 1995.

2. Heiko Mantel and Felix C.Gärtner. A case study in the mechanical verification
of fault-tolerance. Technical Report TUD-BS-1999-08, Department of Computer
Science, Darmstadt University of Technology, 1999.

3. S. Qadeer and N. Shankar. Verifying a self-stabilizing mutual exclusion algorithm.
In David Gries and Willem-Paul de Roever, editors, IFIP International Confer-
ence on Programming Concepts and Methods (PROCOMET ’98), pages 424–443,
Shelter Island, NY, June 1998. Chapman & Hall.

4. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11), 1974.

5. S. S. Kulkarni, J. Rushby, and N. Shankar. A case-study in component-based
mechanical verification of fault-tolerant programs. Proceedings of the 19th IEEE
International Conference on Distributed Computing Systems Workshop on Self-
Stabilization (WSS’99) Austin, Texas, USA, pages 33–40, June 1999.

6. S. S. Kulkarni. Component-based design of fault-tolerance. PhD thesis, Ohio State
University, 1999.

7. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. Formal
Techniques in Real-Time and Fault-Tolerant Systems, 2000.

8. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. Tech-
nical Report MSU-CSE-00-13, Department of Computer Science and Engineering,
Michigan State University, East Lansing, Michigan, 2001.

9. S. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. IEEE
Conference on Dependable and Network Systems (DSN’04), 2004.

52 S.S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir

10. S. S. Kulkarni and A. Ebnenasir. Enhancing the fault-tolerance of nonmasking
programs. International Conference on Distributed Computing Systems, 2003.

11. A. Ebnenasir and S. S. Kulkarni. A framework for automatic synthesis
of fault-tolerance. http://www.cse.msu.edu/ sandeep/software/Code/synthesis-
framework/.

12. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

13. A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-
tolerant computing. IEEE Transactions on Software Engineering, 19(11):1015–
1027, 1993.

14. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference, Version 2.4. Computer Science Laboratory, SRI International, Menlo
Park, CA, December 2001. URL: http://pvs.csl.sri.com/manuals.html.

15. Borzoo Bonakdarpour. Mechanical verification of automatic synthesis of fault-
tolerant programs. Master’s thesis, Michigan State University, 2004.

16. E.A. Emerson and E.M. Clarke. Using branching time temporal logic to synthesis
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

17. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal
logic specifications. ACM Transactions on Programming Languages and Systems,
6(1):68–93, 1984.

18. O. Kupferman and M.Y. Vardi. Synthesizing distributed systems. In Proc. 16th
IEEE Symp. on Logic in Computer Science, July 2001.

19. P. Attie and E. Emerson. Synthesis of concurrent systems with many similar
processes. ACM Transactions on Programming Languages and Systems, 20(1):51–
115, 1998.

20. S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of Byzantine
agreement. Symposium on Reliable Distributed Systems, 2001.

Fully Automatic Binding-Time
Analysis for Prolog�

Stephen-John Craig1, John P. Gallagher2, Michael Leuschel1,
and Kim S. Henriksen2

1 Department of Electronics and Computer Science,
University of Southampton, Highfield,

Southampton, SO17 1BJ, UK
{sjc02r, mal}@ecs.soton.ac.uk

2 Department of Computer Science,University of Roskilde,��

P.O. Box 260, D-4000 Roskilde, Denmark
{jpg, kimsh}@ruc.dk

Abstract. Offline partial evaluation techniques rely on an annotated
version of the source program to control the specialisation process. These
annotations guide the specialisation and ensure the termination of the
partial evaluation. We present an algorithm for generating these anno-
tations automatically. The algorithm uses state-of-the-art termination
analysis techniques, combined with a new type-based abstract interpre-
tation for propagating the binding types. This algorithm has been im-
plemented as part of the logen partial evaluation system, along with a
graphical annotation visualiser and editor, and we report on the perfor-
mance of the algorithm for a series of benchmarks.

1 Introduction

The offline approach to specialisation has proven to be very successful for func-
tional and imperative programming, and more recently for logic programming.

Most offline approaches perform a binding-time analysis (BTA) prior to the
specialisation phase. Once this has been performed, the specialisation process
itself can be done very efficiently [20] and with a predictable outcome.

Compared to online specialisation, offline specialisation is in principle less
powerful (as control decisions are taken by the BTA before the actual static in-
put is available), but much more efficient (once the BTA has been performed).
This makes offline specialisation very useful for compiling interpreters [19], a
key application of partial evaluation. However, up until now, no automatic BTA
for logic programs has been fully implemented (though there are some partial
implementations, discussed in Section 7), requiring users to manually annotate

� Work supported in part by European Framework 5 Project ASAP (IST-2001-38059).
�� Roskilde authors supported in part by the IT-University of Copenhagen.

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 53–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

54 S.-J. Craig et al.

Source
Program

BTA
Annotated
Program

Graphical
Interface

Partial
Evaluator

Entry Points

Static Input

Dynamic Input Output
Specialised

Program

User

Fig. 1. The role of the BTA for offline specialisation using logen

the program. This is an error-prone process, and requires considerable exper-
tise. Hence, to make offline specialisation accessible to a wider audience, a fully
automatic BTA is essential.

In essence, a binding-time analysis does the following: given a program and
a description of the input available for specialisation, it approximates all values
within the program and generates annotations that steer the specialisation pro-
cess. The partial evaluator (or the compiler generator generating the specialised
partial evaluator) then uses the generated annotated program to guide the spe-
cialisation process. This process is illustrated in Fig. 1. The figure also shows
our new graphical editor which allows a user to inspect the annotations and fine
tune them if necessary.

To guide our partial evaluator the binding-time analysis must provide binding
types and clause annotations, which will now be described.

Binding Types
Each argument of a predicate in an annotated program is given a binding type
by means of filter declarations.A binding type indicates something about the
structure of an argument at specialisation time. The basic binding types are
usually known as static and dynamic defined as follows.

– static: The argument is definitely known at specialisation time;
– dynamic: The argument is possibly unknown at specialisation time.

We will see in Section 3 that more precise binding types can be defined by
means of regular type declarations, and combined with basic binding types.
For example, an interpreter may use an environment that is a partially static
data structure at partial evaluation time. To model the environment, e.g., as a
list of static names mapped to dynamic variables we would use the following
definition:

Fully Automatic Binding-Time Analysis for Prolog 55

:- type binding = static / dynamic.
:- type list_env = [] ; [binding | list_env].

Through the filter declarations we associate binding types with arguments of
particular predicates, as in the following example (taken from the inter binding
benchmark to be discussed in Section 6):

:- filter int(static, (type list_env), dynamic).

The filter declarations influence global control, since dynamic parts of argu-
ments are generalised away (that is, replaced by fresh variables) and the known,
static parts are left unchanged. They also influence whether arguments are “fil-
tered out” in the specialised program. Indeed, static parts are already known at
specialisation time and hence do not have to be passed around at runtime.

Clause Annotations
Clause annotations indicate how each call in the program should be treated
during specialisation. Essentially, these annotations determine whether a call in
the body of a clause is performed at specialisation time or at run time. Clause
annotations influence the local control [22]. For the logen system [20] the main
annotations are the following.

– Unfold: The call is unfolded under the control of the partial evaluator. The
call is replaced with the predicate body, performing all the needed substitu-
tions

– Memo: The call is not unfolded, instead the call is generalised using the
filter declaration and specialised independently

– Call: The call is fully executed without further intervention
– Rescall: The call is left unmodified in the residual code

2 Algorithm Overview

Implementing a fully automatic BTA is a challenging task for several reasons.
First, the binding type information about the static and dynamic parts of argu-
ments has to be propagated all throughout the program. Second, on has to decide
how to treat each body call in the program. This has to be guided by termina-
tion issues (avoiding infinite unfolding) but also safety issues (avoiding calling
built-ins that are not sufficiently instantiated). Furthermore, the decisions made
about how to treat body calls in turn affect the propagation of the binding types,
which in turn affect how body calls are to be treated. In summary, we need

– a precise way to propagate binding types, allowing for new types and par-
tially static data,

– a way to detect whether the current annotations ensure safety and termina-
tion at specialisation time,

– and an overall algorithm to link the above two together.

56 S.-J. Craig et al.

Also, in case the current annotations do not ensure termination we need a
way to identify the body calls that are causing the (potential) non-termination
in order to update the annotations. For this we had to implement our own
termination analyzer, based on the binary clause semantics [9]. To achieve a
precise propagation of binding types we have used a new analysis framework
[13] based on regular types and type determinization.

We now outline the main steps of our overall BTA algorithm depicted in
Fig. 2. The input to the algorithm consists of a program, a set of binding
types, and a filter declaration giving binding types to the entry query (the
query with respect to which the program is to be partially evaluated). The
core of the algorithm is a loop which propagates the binding types from the en-
try query with respect to the current clause annotations (step 1), generates the
abstract binary program (steps 2 and 3) and checks for termination conditions
(step 4).

If a call is found to be unsafe at step 4 (e.g. might not terminate) the anno-
tations are modified accordingly. Initially, all calls are annotated as unfold (or
call for built-ins), with the exception of imported predicates which are anno-
tated as rescall (step 0). Annotations can be changed to memo or rescall, until
termination is established. Termination of the main loop is ensured since there
is initially only a finite number of unfold or call annotations, and each iteration
of the loop eliminates one or more unfold or call annotation.

Source
Program .pl

Annotated
Program .ann

+ Filters

Annotated
Program .ann

+ Filters

Binarized
Program

Abstract
Binarized
Program

0. Generate
Initial Annotations

1. Filter
Propagation

2. Binarization
using Logen

4. Termination
Checker

iterate if
changed

3. Convex Hull
Analyzer

Term
Size

List
Length

Fig. 2. Overview of the BTA algorithm

Fully Automatic Binding-Time Analysis for Prolog 57

The decision on how to annotate calls to built-in predicates cannot be handled
by the termination checker, but is guided by a definition of the allowed calling
patterns, with respect to the given set of binding types. For instance, considering
simple binding types static and dynamic, the call X > Y can be executed only
when both X and Y are static, whereas the call X is Y can be executed where Y
is static but X is dynamic (either known or unknown). Some built-ins have more
than one allowed calling pattern; for example functor(T,F,N) can be executed
if either T is static or both F and N are static. Whenever the binding types for a
call to a built-in predicate do not match one of the allowed calling patterns, the
call is marked rescall. Thus if no calling patterns are supplied for some built-in,
then all calls to that built-in will be annotated rescall.

3 Binding Type Propagation

The basis of the BTA is a classification of arguments using abstract values. In
this section we explain how to obtain such a classification for a given program
and initial goal. Our method is completely independent of the actual binding
types, apart from requiring that they should include the type dynamic. Usually
static and nonvar are also included. A binding-time division is a set of filter
declarations of the form p(t1, . . . , tn), where p/n is a program predicate and
t1, . . . , tn are binding types. For the purpose of explanation we consider here
only monovariant binding-time divisions, namely those in which there is not
more than one filter declaration for each predicate. However, the algorithm has
been extended to polyvariant binding-time divisions, which allow several filter
declarations for each predicate.

A binding-time division defines the binding types occurring in each predicate
call in an execution of the program for a given initial goal. This information in
turn is used when determining which calls to unfold and which to keep in the
residual programs. A binding-time division should be safe in the sense that every
possible concrete call is described by some filter declaration in it.

Theuseof static-dynamicbinding typeswas introduced for functionalprograms,
and has been used in BTAs for logic programs [23]. However, a simple classification
of arguments into “fully known” or “totally unknown” is often unsatisfactory in
logic programs, where partially unknown terms occur frequently at runtime, and
would prevent specialisation of many “natural” logic programs such as the vanilla
meta-interpreter [15, 21] or most of the benchmarks from the dppd library [18].

We outline a method of describing more expressive binding types and propa-
gating them. The analysis framework is described elsewhere [13]. In this frame-
work, modes (or “binding times”) such as static and dynamic can be freely mixed
with binding types such as lists.

Regular Binding Types
A regular type t is defined by a rule t = f1(t1,1, . . . , t1,m1); . . . ; fn(tn,1, . . . , tn,mn

)
where f1, . . . , fn are function symbols (possibly not distinct) and for all 1 ≤
i ≤ n and 1 ≤ j ≤ mi, mi is the arity of fi, and ti,j are regular types. The

58 S.-J. Craig et al.

interpretation of such rules is well understood in the framework of regular tree
grammars or finite tree automata [10].

Instantiation modes including static, dynamic and nonvar can be coded as
regular types, for a fixed signature. For example, if we assume that the signature
is {[], [.|.], s, 0, v} with the usual arities, then the definitions of the types ground
term (static), non-variables (nonvar) and any term (dynamic) are as follows.

static = 0; []; [static|static]; s(static)
nonvar = 0; []; [dynamic|dynamic]; s(dynamic)
dynamic = 0; []; [dynamic|dynamic]; s(dynamic); v

The constant v is a distinguished constant not occurring in programs or goals.
Note that v is not included in the types static and nonvar. Therefore any term
of type dynamic is possibly a variable.

In addition to modes, regular types can describe common data structures.
The set of all lists, for instance, is given as list = []; [dynamic|list]. We can
describe the set of lists of list by the type listlist = []; [list|listlist]. Program-
specific types such as the type of environments are also regular types.

binding = static/dynamic
list env = []; [binding|list env]

Type Determinization
We take a given set of regular types, and transform them into a set of disjoint
regular types. This process is called determinization and is a standard operation
on finite tree automata [10]. A set of disjoint types is represented by a set of
type rules of the form t = f1(t1,1, . . . , t1,m1); . . . ; fn(tn,1, . . . , tn,mn

) as before,
but with the added condition that there are no two rules having an occurrence
of the same term fi(ti,1, . . . , ti,mi

). Such a set of rules corresponds to a bottom-
up deterministic finite tree automata [10]. The inclusion of the type dynamic
ensures that the set of rules is complete, that is, that every term is a member of
exactly one of the disjoint types.

For example, given the types dynamic, static, nonvar and list as shown
above, determinization yields definitions of the disjoint sets of terms, which are
(1) non-ground, non-variable non-lists, (2) non-ground lists, (3) ground lists,
(4) variables and (5) ground non-lists. The rules defining these disjoint types are
typically hard to read and would be difficult to write directly. For example, nam-
ing the above 5 types q1, . . . , q5 respectively, the type rule for non-ground lists is
q2 = [q1|q2]; [q2|q2]; [q3|q2]; [q4|q2]; [q5|q2]; [q2|q3]; [q1|q3]; [q4|q3]. A more compact
representation is actually used [13].

Types are abstractions of terms, and can be used to construct a domain
for abstract interpretation [4, 7, 8, 16]. The advantage of determinized types is
that we can propagate them more precisely than non-disjoint types. Overlap-
ping types tend to lose precision. Suppose t1 and t2 are not disjoint; then terms
that are in the intersection can be represented by both t1 and t2 and hence the
two types will not be distinguishable wherever terms from the intersection can

Fully Automatic Binding-Time Analysis for Prolog 59

arise. In effect, a set of disjoint types contains, in such cases, separate types
representing t1 ∩ t2, t1 \ t2 and t2 \ t1. In the worst case, it can thus be seen
that there is an exponential number of disjoint types for a given set of types.
In practice, many of the intersections and set complements are empty and we
find usually that the number of disjoint types is similar to the number of given
types. Thus with disjoint types, we can obtain a more accurate representation
of the set of terms that can appear in a given argument position, while retaining
the intuitive, user-oriented notation of arbitrary types. In fact, the type dec-
larations of logen can be used without modification to construct an abstract
domain.

The rules for a complete set of disjoint types define a pre-interpretation
of the signature Σ, whose domain is the set of disjoint types. An abstract
interpretation based on this pre-interpretation gives the least model over the
domain [2, 3, 12]. This yields success patterns for each program predicate, over
the disjoint types. That is, each predicate p/n has a set of possible success
patterns {p(t11, . . . , t1n); . . . ; p(tm1 , . . . , tmn)}. A set of accurate call patterns can
be computed from the model and an initial typed goal. We use the “magic-set”
approach to obtain the calls, as described by Codish and Demoen [6]. This yields
a set of “call patterns” for each predicate, say {p(s1

1, . . . , s
1
n); . . . ; p(sk

1 , . . . , s
k
n)}.

(Note that we could use a top-down analysis framework, but for analyses based
on pre-interpretations, this would give exactly the same results).

Finally the filter for p/n derived from the set of calls is obtained by collect-
ing all the possible types for each argument together. The set of call patterns
{p(s1

1, . . . , s
1
n); . . . ; p(sk

1 , . . . , s
k
n)}yields thefilterp({s1

1, . . . , s
k
1}, . . . , {s1

n, . . . , s
k
n}).

For displaying to the user, if required, these filters can be translated back to a
description in terms of the original types, rather than the disjoint types.

Analysing Annotated Programs
The standard methods for computing an abstract model and abstract call pat-
terns have to be modified in our procedure, since some body calls may be
marked as memo or rescall. That is, they are not to be unfolded but rather
kept in the specialised program. This obviously affects propagation of binding
types, since a call annotated as memo or rescall cannot contribute any answer
bindings.

When building the abstract model of a program, we simply delete memo-ed
and rescall-ed calls from the program, as they cannot contribute anything to
the model. Let C be a conjunction of calls; then denote by C the conjunc-
tion obtained by deleting memo-ed and rescall-ed atoms from C. Let P be
an annotated program; then we compute the success patterns for the program
P = {H ← B | H ← B ∈ P}.

When deriving a call pattern, say for atom Bj in clause H ← B1, . . . , Bj , . . .,
we ignore the answers to memo-ed and rescall-ed calls occurring in B1, . . . , Bj−1.
That is, we consider the clause H ← B1, . . . , Bj−1, Bj , . . ., when computing the
calls to Bj .

60 S.-J. Craig et al.

4 Termination Checking

Without proper annotations in the source program, the specialiser may fail to
terminate. There are two reasons for nontermination:

– Local Termination: Unfolding an unsafe call may fail to terminate or
provide infinitely many answers.

– Global Termination: Even if local termination is ensured, the specialisa-
tion may still fail to terminate if it attempts to build infinitely many spe-
cialised versions of some predicate for infinitely many different static values.

We do not discuss global termination in this paper. We approach the local ter-
mination problem using the binary clause semantics [9], a representation of a
program’s computations that makes it possible to reason about loops and hence
termination.

Binary Clause Semantics
Informally, the binary clause semantics of a program P is the set of all pairs of
atoms (called binary clauses) p(X̄)θ ← q(t̄) such that p is a predicate, p(X̄) is a
most general atom for p, and there is a finite derivation (with leftmost selection
rule) ← p(X̄), . . . ,← (q(t̄), Q) with computed answer substitution θ. In other
words a call to p(X̄) is followed some time later by a call to q(t̄), computing a
substitution θ.

We modify the semantics to include program point information for each call
in the program. A clause p(ppM, X̄)θ ← q(ppN, t̄) details that the call p(X̄) at
program point ppM is followed sometime later by a call to q(t̄) at program point
ppN , computing a substitution θ. This extra precision is required to correctly
identify the actual unsafe call.

To create the binary clause semantics we specialise a modified vanilla inter-
preter with respect to our source program. This allows us to easily adapt the
semantics for the annotations by changing the rules of the interpreter.

For example, take the classic append program shown in Fig. 3. The transfor-
mation to binary clause semantics is shown in Fig. 4. The first clause represents a
loop from the call app([A|B], C, [A|D]) at program point 0 back to itself with
the arguments app(B, C, D), the second clause represents an infinite number
of possible loops through the same point.

app([], B, B).

app([A|As], B, [A|Cs]) :- app(As, B, Cs).

Fig. 3. The append program

bin_solve_atom__2(0, app([A|B], C, [A|D]), app(B, C, D)).

bin_solve_atom__2(0, app([A|B], C, [A|D]), app(E, F, G)) :-

bin_solve_atom__2(0, app(B, C, D), app(E, F, G)).

Fig. 4. The binary clause version of append from Fig. 3

Fully Automatic Binding-Time Analysis for Prolog 61

Convex Hull Abstraction
The binary semantics is in general infinite, but we make a safe approximation
of the set of binary clauses using abstract interpretation. We use a domain of
convex hulls We use a domain of convex hulls (the convex hull analyser used in
our implementation is derived from ones kindly supplied by Genaim and Codish
[14]] and by Benoy, King and Mesnard [1]) to abstract the set of binary clauses
with respect to a selected norm.

Our implementation currently uses two norms, term size as defined in Eq. 1
and list length as defined in Eq. 2. The use of only two norms effectively restricts
ourcurrent implementation to handle only list-processing examples effectively; we
are extending the system to derive the norms automatically from the propagated
binding types, using techniques described in the literature [17, 27].

|t|term =

⎧⎪⎨
⎪⎩1 +

n∑
i=1

|ti|term if t = f(t1, ..., tn)

0 otherwise

(1)

|t|list =
{

1 + |ts|list if t = [t|ts]
0 otherwise

(2)

Using such an abstraction, we obtain a finite set of binary clauses and a set of
constraints representing a linear relationship between the sizes of the respective
concrete arguments. Fig. 5 is the binary clause program for append, Fig. 4,
abstracted using the domain of convex hulls with respect to the list norm.

bin_solve_atom(0, app(A,B,C), app(D,E,F)) :-

[A = 1 + D, B = E, C = 1 + F, D > = 0, E >= 0, F >= 0]

Fig. 5. Abstract Convex Hull of Fig. 4 using List norm

Checking Termination Criteria
In particular, loops are represented by binary clauses with the same predicate
occurring in the head and body. Termination proofs require that for every ab-
stract binary clause between p and p (at the same program point) there is a
strict reduction in the size for some rigid argument. An argument is rigid if all
of its instances have the same size with respect to the selected norm. We detect
rigidity by examining the filters derived for the arguments, as illustrated below.

The constraints shown in Fig. 5 show a decrease in the first (A = 1+D) and
third argument (C = 1 + F). Given the initial filter declaration:

:- filter app(type list(dynamic), dynamic, dynamic).

The first argument is rigid with respect to the list norm, so termination is proven
for this loop providing these binding types. If the filter specified was:

:- filter app(dynamic,type list(dynamic), dynamic).

Then the call would have to be marked unsafe and would be changed from
unfold to memo, as there is no strict decrease in any rigid arguments.

62 S.-J. Craig et al.

5 Example

We demonstrate the binding-time analysis using the transpose example shown in
Fig. 6. The program takes a matrix, represented as a list of lists, and transposes
the rows and columns.

/* Created by Pylogen */

/* file: transpose.pl */

transpose(Xs,[]) :- nullrows(Xs).

transpose(Xs,[Y|Ys]) :- makerow(Xs,Y,Zs), transpose(Zs,Ys).

makerow([],[],[]).

makerow([[X|Xs]|Ys],[X|Xs1],[Xs|Zs]) :- makerow(Ys,Xs1,Zs).

nullrows([]).

nullrows([[]|Ns]) :- nullrows(Ns).

Fig. 6. Program for transposing a matrix

The initial filter declaration, providing the binding types of the entry point
is :- filter transpose((type list(dynamic)), dynamic). The first argu-
ment is a list of dynamic elements, the length of the list will be known but the
individual elements will not be known at specialisation time. The second argu-
ment is fully dynamic; it will not be given at specialisation time. All calls in
the program are initially annotated as unfold. Using this initial annotation and
the entry types for transpose we propagate the binding types throughout the
program. The resultant binding types are shown in Fig. 7. The list structure has
been successfully propagated through the clauses of the program.

The next stage of the algorithm looks for possibly non-terminating loops
in the annotated program. The result is shown in Fig. 8. The binary clause
representation of the program has been abstracted with respect to the list norm
over the domain of convex hulls. Termination of each of the loops in Fig. 8 must
show a strict decrease in any rigid argument. Based on the propagated binding
types only the first argument of each predicate is rigid with respect to the list
norm. The predicate makerow/3 has a strict decrease (A=1.0+D), nullrows/1
also has a strict decrease (A=1.0+B) but the recursive call to transpose has no
decrease in a rigid argument and is unsafe.

:- filter transpose((type list(dynamic)), dynamic).

:- filter makerow((type list(dynamic)), dynamic, dynamic).

:- filter nullrows((type list(dynamic))).

Fig. 7. Propagated filters for Fig. 6 using the initial filter transpose((type

list(dynamic)), dynamic)

Fully Automatic Binding-Time Analysis for Prolog 63

bin_solve_atom(3, makerow(A,B,C), makerow(D,E,F)) :-

[A=1.0+D,D>=0.0,B=1.0+E,E>=0.0,C=1.0+F,F>=0.0].

bin_solve_atom(4, nullrows(A), nullrows(B)) :-

[A=1.0+B,B>=0.0].

bin_solve_atom(2, transpose(A,B), transpose(C,D)) :-

[B>D,C>=0.0,D>=0.0,A=C,B=1.0+D].

%% Loop at program point 2 is unsafe (transpose/2)

Fig. 8. Binary clause representation of Fig.6 abstracted over the domain of convex
hulls with respect to the list norm

logen(transpose, transpose(A,[])) :-

logen(unfold, nullrows(A)).

logen(transpose, transpose(A,[B|C])) :-

logen(unfold, makerow(A,B,D)),

logen(memo, transpose(D,C)).

logen(makerow, makerow([],[],[])).

logen(makerow, makerow([[A|B]|C],[A|D],[B|E])) :-

logen(unfold, makerow(C,D,E)).

logen(nullrows, nullrows([])).

logen(nullrows, nullrows([[]|A])) :-

logen(unfold, nullrows(A)).

:- filter makerow((type list(dynamic)), dynamic, dynamic).

:- filter nullrows((type list(dynamic))).

:- filter transpose((type list(dynamic)), dynamic).

Fig. 9. Annotated version of Transpose from Fig. 6

Marking the offending unsafe call as memo removes the potential loop and
further iterations through the algorithm produce no additional unsafe calls. The
final output of the BTA algorithm is shown in Fig. 9.

6 Experimental Results

The automatic binding-time analysis detailed in this paper is implemented as
part of the logen partial evaluation system. The system has been tested us-
ing benchmarks derived from the DPPD benchmark library [18]. The figures in
Table 1 present the timing results1 from running the BTA on an unmodified
program given an initial filter declaration. These benchmark examples along

1 The execution time for the Original and Specialised code is based on executing the
benchmark query 20,000 times on a 2.4Ghz Pentium with 512Mb running SICStus
Prolog 3.11.1. The specialisation times for all examples was under 10ms.

64 S.-J. Craig et al.

Table 1. Benchmark Figures for Automatic Binding-Time Analysis

Benchmark BTA Original Specialised Relative Time

combined 3220ms 110ms 30ms 0.27
inter binding 1380ms 60ms 10ms 0.17
inter medium 1440ms 140ms 10ms 0.07
inter simple 2670ms 80ms 30ms 0.38
match 400ms 90ms 70ms 0.78
regexp 780ms 220ms 60ms 0.28
transpose 510ms 80ms 10ms 0.13

with the pylogen system, shown in Fig. 10, can be downloaded from logen
website2.

Fig. 10. Snapshot of a pylogen session

– combined - A test case combining the inter medium, inter simple and reg-
ular expression interpreters.

– inter binding - An interpreter using a partially static data structure for an
environment. In this example we combine the list and term norms.

2 http://www.asap.soton.ac.uk/logen

Fully Automatic Binding-Time Analysis for Prolog 65

– inter medium - An interpreter with the environment split into two separate
lists, one for the static names the other for the dynamic values.

– inter simple - A simple interpreter with no environment, but contains a
selection of built-in arithmetic functions.

– match - A string pattern matcher.
– regexp - An interpreter for regular expressions.
– transpose - A matrix transpose program.

7 Related Work and Conclusion

To the best of our knowledge, the first binding-time analysis for logic program-
ming is [5]. The approach of [5] obtains the required annotations by analysing
the behaviour of an online specialiser on the subject program. Unfortunately,
the approach was overly conservative. Indeed, [5] decides whether or not to un-
fold a call based on the original program, not taking current annotations into
account. This means that a call can either be completely unfolded or not at all.
Also, the approach was never fully implemented and integrated into a partial
evaluator.

In Section 6 of [20] a more precise BTA has been presented, which has been
partially implemented. It is actually the precursor of the BTA here. However,
the approach was not fully implemented and did not consider the issue of fil-
ter propagation (filters were supposed to be correct). Also, the identification of
unsafe calls was less precise as it did not use the binary clause semantics with
program points (i.e., calls may have been classified as unsafe even though they
were not part of a loop).

[26] is probably the most closely related work to ours. This work has a lot
in common with ours, and we were unaware of this work while developing our
present work.3 Let us point out the differences. Similar to [20], [26] was not
fully implemented (as far as we know, based on the outcome of the termination
analysis, the user still had to manually update the annotations by hand) and
also did not consider the issue of filter propagation. Also, [26] cannot handle
the nonvar annotation (this means that, e.g., it can only handle the vanilla
interpreter if the call to the object program is fully static). However, contrary to
[20], and similar to our approach, [26] does use the binary clause semantics. It
even uses program point information to identify non-terminating calls. However,
we have gone one step further in using program point information, as we will
only look for loops from one program point back to itself. Take for example the
following program:

p(a) :- q(a). q(a) :- q(b). q(b) :- q(b).

Both our approach and [26] will mark the call q(a) as unfoldable and the call
q(b) in clause 3 as unsafe. However, due to the additional use of program points,

3 Thanks for reviewers of LOPSTR’04 for pointing this work out to us.

66 S.-J. Craig et al.

we are able to mark the call q(b) in clause 2 as unfoldable (as there is no loop
from that program point back to itself), whereas we believe that [26] will mark
it as unsafe. We believe that this extra precision may pay off for interpreters.
Finally, due to the use of our meta-programming approach we can handle the
full logen annotations (such as call, rescall, resif,...) and can adapt our
approach to compute memoisation loops and tackle global termination.

The papers [24, 25, 28] describe various BTAs for Mercury, even addressing
issues such as modularity and higher-order predicates. An essential part of these
approaches is the classification of unifications (using Mercury’s type and mode
information) into tests, assignments, constructions and deconstructions. Hence,
these works cannot be easily ported to a Prolog setting, although some ideas can
be found in [28].

Currently our implementation guarantees correctness and termination at the
local level, and correctness but not yet termination at the global level. However,
the framework can very easily be extended to ensure global termination as well.
Indeed, our binary clause interpreter can also compute memoisation loops, and
so we can apply exactly the same procedure as for local termination. Then, if
a memoised call is detected to be unsafe we have to mark the non-decreasing
arguments as dynamic. Finally, as has been shown in [11], one can actually relax
the strict decrease requirement for global termination (i.e., one can use ≤ rather
than <), provided so-called “finitely partitioning” norms are used.

Acknowledgements. Thanks to Dan Elphick for his work on the Python mode
for Logen.

References

1. F. Benoy, A. King, and F. Mesnard. Computing Convex Hulls with a Linear Solver.
Theory and Practice of Logic Programming, January 2004.

2. D. Boulanger and M. Bruynooghe. A systematic construction of abstract domains.
In B. Le Charlier, editor, Proc. First International Static Analysis Symposium,
SAS’94, volume 864 of Springer-Verlag Lecture Notes in Computer Science, pages
61–77, 1994.

3. D. Boulanger, M. Bruynooghe, and M. Denecker. Abstracting s-semantics using a
model-theoretic approach. In M. Hermenegildo and J. Penjam, editors, Proc. 6th

International Symposium on Programming Language Implementation and Logic
Programming, PLILP’94, volume 844 of Springer-Verlag Lecture Notes in Com-
puter Science, pages 432–446, 1994.

4. M. Bruynooghe and G. Janssens. An instance of abstract interpretation integrat-
ing type and mode inferencing. In R. Kowalski and K. Bowen, editors, Proceedings
of ICLP/SLP, pages 669–683. MIT Press, 1988.

5. M. Bruynooghe, M. Leuschel, and K. Sagonas. A polyvariant binding-time
analysis for off-line partial deduction. In C. Hankin, editor, Proceedings of the
European Symposium on Programming (ESOP’98), LNCS 1381, pages 27–41.
Springer-Verlag, April 1998.

Fully Automatic Binding-Time Analysis for Prolog 67

6. M. Codish and B. Demoen. Analysing logic programs using “Prop”-ositional
logic programs and a magic wand. In D. Miller, editor, Proceedings of the 1993
International Symposium on Logic Programming, Vancouver. MIT Press, 1993.

7. M. Codish and B. Demoen. Deriving type dependencies for logic programs using
multiple incarnations of Prop. In B. Le Charlier, editor, Proceedings of SAS’94,
Namur, Belgium, 1994.

8. M. Codish and V. Lagoon. Type dependencies for logic programs using
ACI-unification. Theoretical Computer Science, 238(1-2):131–159, 2000.

9. M. Codish and C. Taboch. A semantic basic for the termination analysis of logic
programs. The Journal of Logic Programming, 41(1):103–123, 1999.

10. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree Automata Techniques and Applications.
http://www.grappa.univ-lille3.fr/tata, 1999.

11. S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K. Sagonas. Termination
analysis for tabled logic programming. In N. Fuchs, editor, Proceedings of
the International Workshop on Logic Program Synthesis and Transformation
(LOPSTR’97), LNCS 1463, pages 111–127, Leuven, Belgium, July 1998.

12. J. Gallagher, D. Boulanger, and H. Sağlam. Practical model-based static analysis
for definite logic programs. In J. W. Lloyd, editor, Proc. of International Logic
Programming Symposium, pages 351–365, 1995.

13. J. P. Gallagher and K. Henriksen. Abstract domains based on regular types. In
V. Lifschitz and B. Demoen, editors, Proceedings of the International Conference
on Logic Programming (ICLP’2004), volume 3132 of LNCS. Springer Verlag, 2004.

14. S. Genaim and M. Codish. Inferring termination conditions of logic programs
by backwards analysis. In International Conference on Logic for Programming,
Artificial intelligence and reasoning, volume 2250 of Springer Lecture Notes in
Artificial Intelligence, pages 681–690, 2001.

15. P. Hill and J. Gallagher. Meta-programming in logic programming. In D. M.
Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 5, pages 421–497. Oxford Science
Publications, Oxford University Press, 1998.

16. K. Horiuchi and T. Kanamori. Polymorphic type inference in prolog by abstract
interpretation. In Proc. 6th Conference on Logic Programming, volume 315 of
Springer-Verlag Lecture Notes in Computer Science, pages 195–214, 1987.

17. V. Lagoon, F. Mesnard, and P. J. Stuckey. Termination analysis with types is
more accurate. In C. Palamidessi, editor, Proceedings of Logic Programming, 19th
International Conference, ICLP 2003, volume 2916 of Springer-Verlag Lecture
Notes in Computer Science, pages 254–268, 2003.

18. M. Leuschel. The ecce partial deduction system and the dppd library of
benchmarks. Obtainable via http://www.ecs.soton.ac.uk/~mal, 1996-2002.

19. M. Leuschel, S.-J. Craig, M. Bruynooghe, and W. Vanhoof. Specializing inter-
preters using offline partial deduction. In M. Bruynooghe and K.-K. Lau, editors,
Program Development in Computational Logic, LNCS 3049, pages 341–376.
Springer-Verlag, 2004.

20. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation
in Prolog using a hand-written compiler generator. Theory and Practice of Logic
Programming, 4(1):139–191, 2004.

21. B. Martens and D. De Schreye. Two semantics for definite meta-programs, using
the non-ground representation. In K. R. Apt and F. Turini, editors, Meta-logics
and Logic Programming, pages 57–82. MIT Press, 1995.

68 S.-J. Craig et al.

22. B. Martens and J. Gallagher. Ensuring global termination of partial deduction
while allowing flexible polyvariance. In L. Sterling, editor, Proceedings ICLP’95,
pages 597–613, Kanagawa, Japan, June 1995. MIT Press.

23. T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for
Prolog. In K.-K. Lau and T. Clement, editors, Logic Program Synthesis and
Transformation. Proceedings of LOPSTR’92, pages 214–227. Springer-Verlag, 1992.

24. W. Vanhoof. Binding-time analysis by constraint solving: a modular and higher-
order approach for Mercury. In M. Parigot and A. Voronkov, editors, Proceedings
of LPAR’2000, LNAI 1955, pages 399–416. Springer-Verlag, 2000.

25. W. Vanhoof and M. Bruynooghe. Binding-time analysis for Mercury. In
D. De Schreye, editor, Proceedings of the International Conference on Logic
Programming ICLP’99, pages 500–514. MIT Press, 1999.

26. W. Vanhoof and M. Bruynooghe. Binding-time annotations without binding-time
analysis. In R. Nieuwenhuis and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, 8th International Conference, LNCS 2250,
pages 707–722. Springer-Verlag, 2001.

27. W. Vanhoof and M. Bruynooghe. When size does matter. In A. Pettorossi,
editor, Logic Based Program Synthesis and Transformation, 11th International
Workshop, LOPSTR 2001, Springer-Verlag Lecture Notes in Computer Science,
pages 129–.147, 2001.

28. W. Vanhoof, M. Bruynooghe, and M. Leuschel. Binding-time analysis for
Mercury. In M. Bruynooghe and K.-K. Lau, editors, Program Development in
Computational Logic, LNCS this Volume. Springer-Verlag, 2004.

Logical Mobility and Locality Types

Jonathan Moody

Carnegie Mellon University
jwmoody@cs.cmu.edu

Abstract. We present a type theory characterizing the mobility and
locality of program terms in a distributed computation. The type the-
ory of our calculus is derived from logical notions of necessity (�A) and
possibility (�A) of the modal logic S4 via a Curry-Howard style iso-
morphism. Logical worlds are interpreted as sites for computation, ac-
cessibility corresponds to dependency between processes at those sites.
Necessity (�A) describes terms of type A which have a structural kind
of mobility or location-independence. Possibility (�A) describes terms
of type A located somewhere, perhaps at a remote site. The modalities� and � are defined in a clean, orthogonal manner, leading to a sim-
ple account of mobility and higher-order functions. For illustration, we
assume an execution environment with each location distinguished by a
mutable store. Here modal types ensure that store addresses never es-
cape from the location where they are defined, eliminating a source of
runtime errors. We speculate as to other advantages or trade-offs of this
disciplined style of distributed programming.

1 Introduction and Motivation

We claim that modal logic with necessity (�A) and possibility (�A) can serve
as the basis of a location-aware type theory for distributed computation. We
present a statically typed calculus derived from a natural deduction formulation
of S4 modal logic — derived, in the sense that programs correspond to proof
terms, and types to propositions. The modal propositions �A (“mobile A”) and�A (“remote A”) capture spatial properties of terms relevant to distributed
computation. Mobility and locality are explicitly recognized, but the particular
locations involved remain abstract.

We then give an operational interpretation compatible with the intuition that
types �A and �A denote mobility and locality, respectively. Our operational
model assumes a number of definite locations (computation sites) distinguished
by fixed resources, as well as some indefinite or interchangeable locations. We
consider mutable stores as an example of a fixed resource. To illustrate this ap-
plication, we consider an extension of the pure S4 theory with mutable references
and a simple form of effect typing.

The logical reading of the typing rules leads naturally to the following opera-
tional interpretation: � elimination spawns a freely mobile term of type �A for
evaluation at an arbitrary, indefinite location, and � elimination sends a mobile

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 69–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 J. Moody

fragment of code to a definite location where a remote resource of type �A resides.
Our intuitions arevalidatedwhenwe show type safety for the semantics.Only terms
known to be portable (free of store dependencies) are moved between locations.

While it is desirable to insulate the programmer from the details of scheduling
and communication in a distributed program, spatial considerations are entwined
with certain language constructs at the level of implementation. A memory ad-
dress or file handle, for example, is meaningful only at a particular machine. Im-
plementation techniques such as remote references (proxy objects) and a clever
marshalling scheme allow a language designer to conceal these exceptional cases.
But this has costs in terms of complexity and performance. Rather, we choose
to consider programs based on a simpler kind of mobility. The type theory of
S4 is a static characterization of this class of programs — those that respect the
locality of fixed resources without recourse to runtime mechanisms for creating
and managing remote references.

In this work, we focus on the logical origins of mobility and locality, present-
ing the type theory, and exploring its application to distributed programming.
But it is important to note that, from an operational perspective, the behaviors
we describe are not novel. Our process spawning model is similar to futures of
Multilisp [13], and jumping (or something similar) is a feature of many mobile
process calculi such as Mobile Ambients [6], DPI [9], and others [19, 17]. Jagan-
nathan [10] calls it a “communication-passing” style. In section 6, we discuss
other distributed calculi, their approach to modeling locations, and their static
type theories (if any). Most closely related are calculi due to Jia and Walker
[12, 11], and Murphy et. al [21, 22]. These authors give a distributed interpreta-
tion to the modalities �A and �A — one based on S5 semantics (as opposed
to S4). Though the methodologies are similar, the calculus derived from S4 is
qualitatively different, both in terms of execution model and the programming
discipline it imposes.

In section 2 we present an overview of the logical foundations of the type
theory, referring to prior work [18]. We then define the calculus and its type
system in section 3, justifying the typing rules by reference to logical meanings
of � and �. In section 4, we give an operational semantics and prove its type
safety. In sections 5 and 6 we reflect on the programming discipline of mobility
and locality types and how this solution is related to others. Proofs and some
remarks on our examples are available in a companion technical report [16].

2 Logical Preliminaries

Modal logic is built on a foundational assumption that truth is “localized”.
The Kripke semantics for a classical modal logic ascribes to each world w a
local valuation function Vw(A0) for the atomic propositions. Thus proposition
A0 may be true at world w but false at w′. This localized conception of truth
is what gives modal logic the capacity to describe distributed computation. In
a constructive formulation, we no longer have localized truth valuations, but
proofs of a certain form may be portable, establishing the truth of A in the

Logical Mobility and Locality Types 71

context of assumptions true at any accessible world. Others proofs may be tied
to a particular world. When removed from that local context, they no longer
establish truth of A.

The types, syntax, and static semantics of our calculus are derived from a
constructive formalization of modal logic developed by Pfenning and Davies [18].
This was chosen over other intuitionistic formalisms, such as Simpson’s [20], since
proof reduction and substitution have simple explanations, and the logic does not
rely on explicit reasoning about worlds and accessibility. The Pfenning/Davies
formalism is based on three primitive judgments on A, a proposition: A true,
meaning that A is locally true “here”; A valid, meaning that A true holds in
every accessible world; and A poss, meaning that A true holds in some acces-
sible world. Validity (A valid) is also commonly referred to as necessary truth.
These judgments and the propositions A → B (implication), �A (necessity),
and �A (possibility) are defined in relationship to one another, culminating in a
natural deduction system for a modal logic supporting axioms characteristic of
constructive S4. The primary judgments are Δ;Γ � A true and Δ;Γ � A poss,
where Δ are assumptions of the form Ai valid, and Γ are assumptions Ai true.

The intuition behind our application of modal logic to distributed program-
ming is the following: If, following the Curry-Howard approach, we interpret
propositions as types and proofs as programs, it is also quite natural to inter-
pret the logical worlds as sites for computation. Proofs of validity (A valid)
correspond to mobile, portable terms. And proofs of possibility (A poss) corre-
spond to computations that produce a term in some definite, perhaps remote,
location. An extended discussion of the background and logical motivation of
the calculus can be found in the technical report [15].

3 Modal Type Theory and Calculus

The syntax of terms M and types A is given in figure 1. We call the fragment with
types A → B, �A and �A the core calculus. To support interesting examples,
we include several extensions: generic effectful computation characterized by the
monadic type©A, and mutable references refA as store-effects. We also assume
a set of base types nat, bool, 1 (unit type), etc.

Corresponding to the judgments A true and A poss of the modal deduction
system, we have typing judgments M : A and M ÷ A, respectively. To charac-
terize local, effectful computations we add a third form of judgment M :∼ A. We
summarize the typing judgments and their informal readings:

Judgment Significance
Δ;Γ �M : A M has type A here (local pure term)
Δ;Γ �M :∼ A M produces result of type A here (local effects)
Δ;Γ �M ÷A M produces result somewhere (non-localized comp.)

The hypothetical form(s) Δ;Γ � M : A, etc. are made in the context of some
mobile variables u :: A ∈ Δ, corresponding to assumptions A valid, and local

72 J. Moody

Types (A, B) Syntactic Forms (M, N)

Local A → B x | λx:A . M | M N
1, bool, nat () | true | false | (defn. elided . . .)

Spatial �A u | boxM | let box u =M inN�A diaM | let dia x =M inN

Effects ©A compM | let comp x =M inN
refA refM | !M | M :=N

Fig. 1. Types and terms of the modal calculus

variables x : A ∈ Γ corresponding to assumptions A true. The typing rules are
presented in figure 2.

Locations are implicit in the local context Γ , in the following sense: Δ;Γ �
M : A means M has type A in a location where local bindings for Γ are available.
Thus certain forms of judgment have a special significance. Δ; · �M : A, means
that M : A any place via weakening on Γ . This form of typing derivation
corresponds to a proof of A valid in the deduction system. By analogy, Δ; x :
B �M ÷A, means that M ÷A holds in a location where x : B.

3.1 Spatial Content of Typing

Neither the deductive formalism [18] nor the typing rules involve locations ex-
plicitly, but a few of the typing rules nonetheless have spatial content, by virtue
of interaction between the local context Γ , and judgments M : A, M÷A, etc. For
example, rule �I states that mobile terms are those which depend only on other
mobile terms in Δ. Effects are prohibited under boxM by requiring M : A.1 The
elimination form allows us to bind such a term to u :: A in Δ. Such variables
have a scope extending beyond the confines of a single location, so it is essential
that only mobile values be bound to u :: A.

Δ; · �M : A
Δ;Γ � boxM : �A

�I
Δ;Γ �M : �A Δ, u :: A;Γ � N : B

Δ;Γ � let box u =M inN : B �E

The rule ©E describes binding the result of a local computation M : ©A to
a local variable x : A. Of course, some variables in Γ could be bound to values
dependent on prior effects. Under the assumption that effects are not destructive,
it is sound to retain the local context Γ in typing Δ;Γ, x : A � N :∼ B.

Δ;Γ �M : ©A Δ;Γ, x : A � N :∼ B

Δ;Γ � let comp x =M inN :∼ B
©E

1 This might be weakened to allow some benign, non-observable classes of effects, but
executing I/O effects at an arbitrary location leads to unpredictable behavior.

Logical Mobility and Locality Types 73

Mobile Context Δ ::= · | Δ, u::A

Local Context Γ ::= · | Γ, x:A

Δ; Γ � M : A

Δ; Γ, x : A, Γ ′ � x : A
hyp

Δ, u :: A, Δ′; Γ � u : A
hyp∗

Δ; Γ, x : A � M : B

Δ; Γ � λx:A . M : A → B
→ I

Δ; Γ � M : A → B Δ; Γ � N : A

Δ; Γ � M N : B
→ E

Δ; · � M : A

Δ; Γ � boxM : �A
�I

Δ; Γ � M : �A Δ, u :: A; Γ � N : B

Δ; Γ � let box u =M inN : B
�E

Δ; Γ � M :∼ A

Δ; Γ � compM : ©A
©I

Δ; Γ � M ÷ A

Δ; Γ � diaM : �A
�I

Δ; Γ � M :∼ A

Δ; Γ � M : A

Δ; Γ � M :∼ A
comp

Δ; Γ � M : ©A Δ; Γ, x : A � N :∼ B

Δ; Γ � let comp x =M inN :∼ B
©E

Δ; Γ � M : A

Δ; Γ � refM :∼ refA
talloc

Δ; Γ � M : �A Δ, u :: A; Γ � N :∼ B

Δ; Γ � let box u =M inN :∼ B
�Ec

Δ; Γ � M : refA

Δ; Γ � !M :∼ A
tget

Δ; Γ � M : refA Δ; Γ � N : A

Δ; Γ � M :=N :∼ 1
tset

Δ; Γ � M ÷ A

Δ; Γ � M : A

Δ; Γ � M ÷ A
poss

Δ; Γ � M : �A Δ; x : A � N ÷ B

Δ; Γ � let dia x =M inN ÷ B
�E

Δ; Γ � Q :∼ A

Δ; Γ � Q ÷ A
poss′

Δ; Γ � M : �A Δ, u :: A; Γ � N ÷ B

Δ; Γ � let box u =M inN ÷ B
�Ep

Δ; Γ � M : ©A Δ; Γ, x : A � N ÷ B

Δ; Γ � let comp x =M inN ÷ B
©Ep

; M : A

; M A

; M Aposs

poss’

comp

Fig. 2. Typing rules for the core modal calculus extended with effects. Allocation,
dereference, update of reference cells are considered effectful computations. Rules for
base types, other type constructors, etc. are omitted since they are orthogonal and
defined in the usual ways under local term typing (Δ; Γ � M : A). The diagram
illustrates subsumptions between the judgments (poss, poss′ and comp)

74 J. Moody

Finally, �E describes the binding of a remote term value to a local variable x : A.
For this to be sound, it must be the case that the continuation Δ; x : A � N ÷B
be well-formed at the remote location. This is ensured by restricting the local
context to a single binding x : A available at some remote location. The �I rule
allows us to encapsulate a term M ÷A as a remote term �A.

Δ;Γ �M ÷A

Δ;Γ � diaM : �A
�I

Δ;Γ �M : �A Δ; x : A � N ÷B

Δ;Γ � let dia x =M inN ÷B
�E

3.2 Examples

The definition of �A (mobility) is orthogonal to the rest of the type constructors;
even lexically scoped closures of type nat → nat can be mobile �(nat → nat).
This is more powerful than ad-hoc restrictions on mobility based on the form of
types.

let plusk : �nat -> �(nat -> nat) =
(λ x : � nat .
let box k = x in

box (λ y : nat . y + k))
(* incr a mobile function *)
let box incr :: nat -> nat = plusk (box 1)

Moving the closure representation of incr is sound since we know the free vari-
able k :: nat in box (λy:nat . y + k) is bound to a mobile value.

Mobile terms (boxM : �A) are Γ -closed and free of local dependencies. They
can be evaluated at any location without regard to local resources. The elimi-
nation form let box u = boxM inN spawns M for evaluation in an independent
process (at an arbitrary location). It is straightforward to introduce parallelism
with box and let box. Consider the Fibonacci function, implemented in a re-
cursive fashion:

let fib : �nat -> nat =
mfix f . λ bn .

let box n = bn in
if n < 2 then n

else let box f1 = box f (box (n-1)) in
let box f2 = box f (box (n-2)) in

f1 + f2
in fib (box 5)

Here the definition of f must itself be mobile, since f occurs under box. The
typing rule for mobile fixpoint mfix requires that the body be Γ -closed analo-
gous to the rule �I. Fixpoint operators are described formally in a companion
technical report [16].

Values of type �A can be used to model locations with special roles during
computation. Type A describes the resource/interface provided by that site.
Non-trivial values of this type must be obtained through a primitive binding

Logical Mobility and Locality Types 75

mechanism. We can form a term diaM : �A in the source language, but M is
only “remote” in a trivial sense.

(* rqueue : �({insert:nat->©unit, ...}) *)
let rqueue = bind queue ... in

(* insert (x : �nat) into rqueue *)
let box v = x in
let dia q = rqueue in (* jump to queue location *)
let comp () = q.insert v in
...

The actual location of rqueue is hidden by the type constructor �, so the
binding mechanism is free to choose which location will provide the service.
Our type discipline requires that the code sent to the remote location be free
of any dependence on local bindings in Γ with the exception of q itself, which
can be bound upon arrival. See [16] for further discussion of primitive remote
resources.

4 Operational Interpretation

4.1 Model of Locations

We now formalize the operational semantics in a way that is consistent with the
logical readings of �A and �A described above. The semantics should reflect
clearly the spatial distribution of program fragments, so that communication
(movement) of terms is evident. To this end we introduce processes 〈l : M〉 con-
sisting of a term M labeled uniquely by l. The semantics should also represent
concretely the distinguishing features of each location. In this instance, locations
are distinguished by a store H mapping addresses a to values. Finally, processes
are placed in structured configurations C that reflect the relationships between
processes, stores, and other processes. See figure 3.

The notation [H � P] represents a collection of processes P executing inside
a definite location under the store H. Some processes have no definite location,
only a placement 〈l : M〉 � C relative to other processes C. If one thinks of
processes as worlds of a Kripke model, the connective � can be viewed as an
assertion of accessibility. For example, [H � P] � C means that processes C are
accessible from P .

Store H ::= · | H[a 	→ V]

Co-located Processes P ::= · | P, 〈l : M〉
Configuration C ::= · | 〈l : M〉 � C | [H � P] � C

Fig. 3. Runtime Structures: processes, stores, and configurations

76 J. Moody

Runtime Term M, N ::= . . . | l | @l | a

Mobile Context Δ ::= · | Δ, u :: A | Δ, l :: A

Local Context Γ ::= · | Γ, x : A | Γ, a : A | Γ, @l : A

Δ = Δ1, l :: A, Δ2

Δ; Γ � l : A
res

Γ = Γ1, @l : A, Γ2

Δ; Γ � @l ÷ A
loc

Γ = Γ1, a : A, Γ2

Δ; Γ � a : refA
addr

Δ �c C : Γ

Δ; · � M : A Δ, l :: A �c C : Γ

Δ �c 〈l : M〉 � C : Γ
indef

Δ �c · : · none

Δ �c C : Γ Δ; Γ �s H : Γ H Δ; Γ, Γ H �c P : Γ ′

Δ �c [H � P] � C : Γ ′, Γ
location

Δ; Γ �c P : Γ ′

Δ; Γ �c P : Γ ′ Δ; Γ � M ÷ A

Δ; Γ �c P, 〈l : M〉 : Γ ′, @l : A
proc

Δ; Γ �c · : · empty

Δ; Γ �s H : Γ ′

Δ; Γ �s H : Γ ′ ⇐⇒ ∀a ∈ Dom(H ∪ Γ ′) . Δ; Γ, Γ ′ � H(a) : Γ ′(a)

Fig. 4. Runtime terms, generalized typing contexts, and configuration typing

We permit process labels and store addresses in terms at runtime. Process labels
occur in two forms: l and @l. Both refer to a process 〈l : M〉 but l denotes the
result value of a mobile process and @l denotes the value “at” process l (which may
not be mobile). Typing contexts Δ and Γ are generalized to account for labels and
addresses. We provide typing rules for these new syntactic forms in figure 4.

A configuration C is well-formed iff · �c C : Γ . That is, all processes in C
are well-formed, and the processes P at definite locations [H � P] have types
given by Γ . See figure 4 for the definition. There are subsidiary judgments for
typing stores Δ;Γ �s H : Γ ′, and co-located processes Δ;Γ �c P : Γ ′. The
label-binding structure of a configuration is determined by accessibility (�). The
form 〈l : M〉 �C binds l :: A in the subsequent portion C. The form [H � P] �C
binds the labels li : Ai due to C in the processes P . Local store addresses a
defined by H are also bound in P .

4.2 Substitution and Values

We adopt the definitions of substitution from Pfenning and Davies [18] with
trivial extensions to account for labels and store addresses. There are multiple
forms of substitution, two of which are relevant here. [[M/u]] is the substitution

Logical Mobility and Locality Types 77

of a mobile term for u and [M/x] is substitution of a local term for x. They
are defined in the usual compositional way, avoiding variable capture. Labels
and store addresses denote syntactically closed terms, so [[M/u]]@l = @l, for
example. Because of this, we can say that substitution acts locally (within a
single process). Variables of the two sorts have different typing properties so the
relevant substitution properties are subtly different.

Lemma 1 (Substitution Properties).

Δ; · � M : A ∧ Δ, u :: A, Δ′; Γ � N : B =⇒ Δ, Δ′; Γ � [[M/u]]N : B
Δ; · � M : A ∧ Δ, u :: A, Δ′; Γ � N :∼ B =⇒ Δ, Δ′; Γ � [[M/u]]N :∼ B
Δ; · � M : A ∧ Δ, u :: A, Δ′; Γ � N ÷ B =⇒ Δ, Δ′; Γ � [[M/u]]N ÷ B

Δ; Γ � M : A ∧ Δ; Γ, x : A, Γ ′ � N : B =⇒ Δ; Γ, Γ ′ � [M/x]N : B
Δ; Γ � M : A ∧ Δ; Γ, x : A, Γ ′ � N :∼ B =⇒ Δ; Γ, Γ ′ � [M/x]N :∼ B
Δ; Γ � M : A ∧ Δ; Γ, x : A, Γ ′ � N ÷ B =⇒ Δ; Γ, Γ ′ � [M/x]N ÷ B

Proof: straightforward, by induction on the typing derivation for N . The prop-
erty is established for derivations of N : B first, then N :∼ B assuming the
former case, then N ÷ B assuming substitution properties hold in both the
former cases. �

Substitutions [[M/u]]N and [M/x]N are only properly defined for terms M
satisfying M : A. For example, [[let dia x =M inN/u]] is undefined. Terms
M :∼ A and M ÷A have different logical properties which are not respected
by ordinary substitution. Special forms of substitution can be defined for these
cases (see [18]), but our operational semantics is designed so that only [[M/u]]N
and [M/x]N are required.

The values of the calculus are as follows, eliding values of base type which
are standard. Local values correspond to the typing judgment Δ;Γ � V : A (or
V :∼ A). General values correspond to Δ;Γ � V ∗ ÷A.

Local Value V ::= x | u | λx:A . M | boxM | diaM | compM | a | . . .

Value V ∗ ::= @l | V

To achieve more concurrency, we treat labels l as pseudo-values, though they
can be reduced further by synchronizing on the result of process l. We use the
notation V to denote local value or label l.

4.3 Reduction Rules

We use evaluation context notation to specify where reduction steps may occur
inside of terms; R[N] denotes a term decomposed into context R[] and subterm
N . Any well-formed term has one or more decompositions. Non-uniqueness arises
from the treatment of labels r. Pseudo-values V occur throughout the definition
of contexts and redices, so M = l N is decomposed as either R = [l] N (function
position) or R = l R′ (argument position).

We present the reduction rules C =⇒ C ′ in a way that elides unchanged,
irrelevant parts of the configuration. For example, the rule 〈l : M〉 =⇒ 〈l : M ′〉
applies to any single process, in a definite location [H � . . .] or not. See
figure 5.

78 J. Moody

Eval. Ctxt. R ::= [] | R N | V R | let box u =R inN
| let dia x =R inN | let dia x = diaR inN
| let comp x =R inN | let comp x = compR inN
| refR | !R | R :=N | a :=R

letbox 〈l1 : R[let box u = boxM inN]〉 =⇒ 〈l2 : M〉 � 〈l1 : R[[[l2/u]]N]〉
(where l2 fresh)

syncr 〈l2 : V 〉 � . . . 〈l1 : R[l2]〉 =⇒ 〈l2 : V 〉 � . . . 〈l1 : R[V]〉
syncl 〈l1 : R[let dia x = dia (@l2) inN]〉 � . . . [H � 〈l2 : V 〉]

=⇒ 〈l1 : @l3〉 � . . . [H � 〈l2 : V 〉, 〈l3 : R[[V /x]N]〉]
(where l3 fresh)

resolve 〈l1 : R[let dia x = dia (@l2) inN]〉 � . . . 〈l2 : @l3〉
=⇒ 〈l1 : R[let dia x = dia (@l3) inN]〉 � . . . 〈l2 : @l3〉

letdia 〈l1 : R[let dia x = diaV inN]〉
=⇒ 〈l1 : R[[V /x]N]〉

letcomp H � 〈l : R[M]〉 =⇒ H � 〈l : R[[V /x]N]〉
(where M = let comp x = compV inN)

alloc H � 〈l : R[refV]〉 =⇒ H[a 	→ V] � 〈l : R[a]〉
(where a fresh)

get H � 〈l : R[!a]〉 =⇒ H � 〈l : R[H(a)]〉
set H � 〈l : R[a :=V]〉 =⇒ H[a 	→ V] � 〈l : R[()]〉

app 〈l : R[(λx:A . M) V]〉 =⇒ 〈l : R[[V /x]M]〉
. . . =⇒ . . .

Fig. 5. Reduction rules, organized by category. There are spatial reductions associated
with the modalities which allow interaction between processes, as well as pure and
effectful local reductions

The most revealing reduction rules are those governing � and � introduction
and elimination. This is where the spatial content of the calculus is found, and
our semantics permits creation and interaction between processes in these rules.
To reduce (let box u = boxM inN), we spawn an independent process l2 to carry
out the evaluation of subterm M . The spawned process l2 is placed outside of
a definite location, reflecting the fact that M may be evaluated anywhere. The
rule syncr allows retrieving the mobile result value of such a process. Reduc-
ing (R[let dia x = dia@l2 inN]) involves sending R[] and N to the specific
location where 〈l2 : V 〉 resides. Notice that the value V is never moved out-
side [H � . . .], though it is duplicated in the fresh process l3. Rule resolve allows

Logical Mobility and Locality Types 79

traversing chains of indirection to locate a remote value, and letdia covers the
trivial case of a local term.

There are also pure and effectful local reduction steps. The local reductions
involve only one process, and, in the latter case, the local store H. Reductions
associated with additional base types, products (A × B), sums (A + B), etc.
would be in this family.

4.4 Properties

Type preservation and progress theorems hold for our semantics; mobility (�A)
and locality (�A) types ensure that our distributed programs are safe. This
would be unremarkable but for the presence of certain localized terms in our
semantics — the store addresses a. The criterion for well-formed configurations
specifies that addresses bound by store H only occur in processes P inside the
definite location [H � P]. The modal type discipline ensures that programs
respect the locality of store addresses.

For well-formed decompositions R[M], there is an inversion lemma which
allows us to conclude M is also well-formed. This is a standard property for
evaluation contexts, but in our case M might satisfy more than one of the three
typing judgments. Some decompositions are ruled out by typing, R[M] : B and
M :∼ A, for example, are incompatible.

Lemma 2 (Context Typing Inversion).

Δ; Γ � R[M] : B =⇒ ∃A . Δ; Γ � M : A
Δ; Γ � R[M] :∼ B =⇒ ∃A . Δ; Γ � M : A ∨ Δ; Γ � M :∼ A
Δ; Γ � R[M] ÷ B =⇒ ∃A . Δ; Γ � M : A ∨ Δ; Γ � M :∼ A ∨ Δ; Γ � M ÷ A

Proof: Each is proved in order, assuming the prior one(s) hold. Individually, we
proceed by induction on evaluation contexts. For each form of context, we can
invert to the relevant typing rule or a subsumption rule (comp, poss, or poss′)
applies. �

Under certain conditions, a context R[] can be moved from one environment
to another because its constituent subterms are Γ -closed. That is, R[] may be
independent of local bindings and mobile, just as a term M encapsulated as
boxM is mobile.

Lemma 3 (Mobile Continuations). Assume a context R[] such that Δ;Γ �
M ÷ A =⇒ Δ;Γ � R[M] ÷ B (for any M). Then Δ,Δ′;Γ ′ � N ÷ A =⇒
Δ,Δ′;Γ ′ � R[N]÷B (for any Δ′, Γ ′, and N).

Proof: by induction on the structure of R. Due to typing, the only possibility is
R = let dia x1 = diaR′ inN1. By inversion on typing we can apply the IH toR′.
Also by inversion, Δ; x1 : A1 � N1 ÷B. The conclusion follows by Δ-weakening
and the �E typing rule. �
Theorem 1 (Type Preservation). If �c C : Γ and C =⇒ C ′ then �c C ′ : Γ ′

for some Γ ′ which extends Γ .

80 J. Moody

Proof: by cases on derivation of C =⇒ C ′, using the definition of �c C : Γ ,
inversion on typing derivations, and substitution properties. In the critical cases
where fragments of the program move from one process to another, these mobile
terms, values, or contexts remain well-formed via weakening (of Δ and/or Γ).
See the companion technical report [16] for selected cases. �

To establish progress, we first enumerate the redices of the semantics and give
a decomposition lemma. The category 〈localredex 〉 corresponds to local reduction
rules. But note that reducing l or let dia x = dia@l inN requires interaction
with other processes.

Definition 1 (Redex and Local Redex).

〈redex 〉 ::= l | let dia x = dia@l inN | 〈localredex 〉
〈localredex 〉 ::= (λx:A . M) V | let box u = boxM inN

| let dia x = diaV inN | let comp x = compV inN

| refV | !a | a :=V

Lemma 4 (Decomposition). Well-formed terms M are either values, or can
be decomposed as R[N] where N is of the form 〈redex 〉.

Δ; Γ � M : B =⇒ M = V ∨ ∃R . M = R[〈redex 〉]

Δ; Γ � M :∼ B =⇒ M = V ∨ ∃R . M = R[〈redex 〉]

Δ; Γ � M ÷ B =⇒ M = V ∗ ∨ ∃R . M = R[〈redex 〉]

Proof: Each is proved in order, assuming the prior one(s) hold. The proof is
by induction on typing derivations. If M is a value V (or M = V ∗), we are
done. Otherwise, M is a redex in the empty context (trivial decomposition),
or we invert the relevant typing rule and proceed by induction on a typing
subderivation to show that M has a non-trivial decomposition. �
Theorem 2 (Progress). If �c C : Γ then either (1) there exists C ′ such that
C =⇒ C ′ or (2) C is terminal (all processes contain V ∗).

Proof: Generalize the statement as follows: If Δ �c C : Γ then (1) C =⇒ C ′ or
(2) C is terminal or (3) C has a process 〈l : R[l′]〉 blocked on label l′ :: A ∈ Δ.
The proof is by induction on derivations and relies on case analysis and the
decomposition lemma. The main progress theorem is an instance where C is
closed (Δ = ·), so case (3) is vacuous. See [16] for details. �

5 Consequences of Modal Types

Adherence to a theoretical definition of mobility and locality imposes a certain
programming discipline. It is difficult to justify our choice of S4 as the singular
theory of mobility and locality for distributed programming. However, we can
point out the consequences of adopting S4 and identify situations in which such
a discipline is advantageous.

In the first place, S4 gives us a clean, static definition of mobility indepen-
dent of the dynamic one. It is embodied in the judgment Δ; · � M : A (and

Logical Mobility and Locality Types 81

the variation Δ; x:A � M ÷ B) which requires a mobile term be Γ -closed (or
nearly so). Without this condition, the simple copying interpretation of mo-
bility (rules letbox, syncr, syncl) is wrong! To repair this, we could handle
store addresses as a special case. But runtime mobility would then mean dif-
ferent things for different types, indicating that something is perhaps amiss
— that there is a distinction between terms we failed to recognize. The type
discipline of S4 allows us to recognize this early, during typechecking. For
example:

(* Incorrect *)
let comp xr = comp ref 0 in

(*Correct (explicit duplication)*)
let comp xr = comp ref 0 in
let comp n = comp !xr in
let box u = marsh n in

let dia = someplace in let dia = someplace in
let comp xr’ = comp ref u in

let comp y = comp !xr in
...

let comp y = comp !xr’ in
...

The incorrect code refers to a local value xr inside mobile code, while the
correct version explicitly duplicates the reference cell as xr′ in the new location.
The function marsh : nat→ �nat is assumed to convert a natural number to its
mobile representation. While the example above is trivial, the type theory also
accounts for structured data and higher-order functions.

Secondly, there are consequences linked to the particular choice of S4 modal
logic. The character of S4 comes from an assumption that accessibility between
worlds is reflexive and transitive. In practice, this means that distance (number
of hops) is irrelevant. This is reflected in both the type theory and the semantics
of our calculus. For example: 〈l1 : V 〉 � 〈l2 : l1〉 � 〈l3 : l2〉 =⇒ 〈l1 : V 〉 � 〈l3 : l1〉 via
rule syncr. However, there is no requirement that accessibility be symmetric.
But why should direction matter? Essentially this means that programs exe-
cute without introducing 2-way interdependence between processes/locations.
This is advantageous when one considers garbage collection of processes or store
locations. With cycles among locations allowed, distributed garbage collection
becomes quite difficult to implement efficiently.

If, on the other hand, symmetry is explicitly recognized (as it is in the logic
S5), certain new programming idioms become admissible. [21, 12] Some of these
involve a mobility by-remote-reference interpretation.2 This second kind of mo-
bility introduces interdependencies among locations. So it seems that the type
discipline of S4, though not the only way to define mobility and locality, de-
scribes a simpler kind of distributed programming which is likely to be efficiently
implementable.

2 The detailed reasons behind this claim are beyond the scope of this paper, but the
interested reader should compare our interpretation of values of type �A to those
in an S5-based calculus such as [21].

82 J. Moody

6 Related Work

There are many prior foundational calculi which have a distributed operational in-
terpretation. Most notably the Pi-calculus [14] and offspring. Pi-calculus processes
interact by communicating names over named channels. Locations are thought of
as implicit in the connectivity of processes. And names, the only form of resource,
do not have a definite location or fixed scope (due to scope-extrusion). Thus loca-
tions in the Pi-calculus have no fixed properties or identity. Our approach differs
in that we focus on describing locations and their distinguishing properties.

Various proposed calculi have added explicit locations to the Pi-calculus. Ex-
amples are the DPI calculus of Hennessy et. al [9] and lsdπ by Ravara, Matos, et.
al [19]. These calculi allow some channel names to be declared fixed to a location,
while others follow the laws of scope extrusion. DPI has a type system that tracks
the locality of channel names, and associates each location with a set of resources
(names) bound in that location. The Klaim calculus is also based on localized
resources (multiple tuple spaces). De Nicola, et. al give a type system for Klaim
[17] that checks process behaviors against administratively granted capabilities.

The ambient calculus [6] proposed by Cardelli and Gordon is a more radical
departure, replacing channels with ambients n[]. Ambients are places which
may contain other ambients and running processes. They also serve as locations
in which fragments of the program exchange messages. Cardelli and Gordon
[8, 7] and Caires and Cardelli [2, 3] have developed an ambient logic with modal
operators to characterize the location structure and behavior of ambient calculus
programs. In their work, accessibility is interpreted as containment of ambients,◊Ψ requires all sub-locations satisfy Ψ , and ♦Ψ requires that some sub-location
satisfy Ψ . As with names in the Pi-calculus, untyped ambients have no fixed
locality or scope; in the absence of a specification, nested ambients may move
freely in and out of other ambients in response to actions of the running program.
Cardelli, Ghelli, and Gordon also developed a static type system for ambients [4,
5] which restricts ambient mobility. But their notion of mobility is quite different
from the one we derived from logical necessity. An ambient characterized as
immobile may be nested inside a mobile one, for example.

Modal logics should be referred to in the plural, because there are several
different ways to define the meaning of �A and �A. Following a similar intuition,
others have derived distributed calculi from S5 or S5-like hybrid logics. S5 is
distinguished from S4 by the assumption that accessibility between worlds is
symmetric, in addition to reflexive and transitive. The Lambda 5 calculus of
Murphy, Crary, Harper, and Pfenning [21, 22] is derived from pure S5. And
Jia and Walker’s λrpc language [12, 11] is based on a S5-like hybrid logic with
spatial types A@w and n[A] (absolute and relative locations) in addition to the
pure modalities �A and �A. Both type theories are based in a formalism with
explicit worlds; the programmer specifies directly where all fragments of the
program are evaluated. This is qualitatively different than our S4 calculus, in
which boxed terms are evaluated at any indefinite location. In some ways, S5
allows a programmer to do more than S4. For the most part, this is explained by
the axiom schemas (5) �A→ ��A and (5’) ��A→ �A. Axiom (5) represents

Logical Mobility and Locality Types 83

the ability to make (references to) remote terms mobile, and (5’) the ability to
return a mobile term which happens to be remote. Both can be given a safe and
sensible semantics, but there are costs to be weighed. For example, supporting (5)
complicates storage management in a distributed implementation, since mobile
remote references to arbitrary local values can be created. The S4 type theory
defines mobility and locality in a minimal way without invoking this capability.

In [1] Borghuis and Feijs present a language based on a single �o modality.
However, their operational interpretation of this modality is not based on the
spatial interpretation of � that we adopt. Rather �o(A→ B) represents location
o’s knowledge of how to transform a value of type A to one of type B. The
calculus allows composing services and applying them to values, which are all
assumed to be mobile.

7 Conclusions

While S4 does not lead to the most computationally powerful distributed lan-
guage, it has a relatively simple programming model and type system. Further-
more, the discipline imposed by S4 could be advantageous because it simplifies
the runtime support for marshalling and distributed garbage collection. It also
encourages the programmer to work locally (as noted by Jagannathan [10]).

In this instance, we treated stores H as the fundamental distinguishing prop-
erty of locations, but the problem of local resources is more general. Store ad-
dresses serve as canonical example localized entities, but the type system is
independent of this choice. Besides mutable references, file handles, or other
pointers to OS data structures, it is not so clear what other classes of localized
value there might be. Certainly mobility (by-copying) is not tenable in situa-
tions where identity of an object must be preserved. But one might choose to
fix certain resources to locations for reasons of efficiency, privacy, or security.

In future work, we plan to continue this abstract investigation of distributed
computation. Various second-order extensions of the type theory are under in-
vestigation. Hopefully this will shed new light on how abstract datatypes should
behave in a distributed computation, and the meaning of abstraction-safety in
that context. A prototype implementation is also planned, to determine where
and to what degree the execution model of S4-based programs leads to savings
in cost and complexity.

Acknowledgements. Frank Pfenning for feedback on a draft of this paper.
This material is based upon work supported under a National Science Foundation
Graduate Research Fellowship.

References

1. Tijn Borghuis and Loe Feijs. A constructive logic for services and information flow
in computer networks. The Computer Journal, 43(4), 2000.

84 J. Moody

2. Lúıs Caires and Luca Cardelli. A spatial logic for concurrency (part I). In Theo-
retical Aspects of Computer Software (TACS), volume 2215 of LNCS, pages 1–37.
Springer, October 2001.

3. Lúıs Caires and Luca Cardelli. A spatial logic for concurrency (part II). In CON-
CUR, volume 2421 of LNCS, pages 209–225. Springer, August 2002.

4. Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types for mobile
ambients. In Jiri Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors,
Automata, Languagese and Programming, 26th International Colloquium (ICALP),
volume 1644 of LNCS, pages 230–239. Springer, 1999.

5. Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types for mobile
ambients. Technical Report MSR-TR-99-32, Microsoft, June 1999.

6. Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Soft-
ware Science and Computation Structures (FOSSACS), volume 1378 of LNCS,
pages 140–155. Springer-Verlag, 1998.

7. Luca Cardelli and Andrew D. Gordon. Logical properties of name restriction. In
Samson Abramsky, editor, Typed Lambda Calculi and Applications, volume 46-60
of LNCS, pages 46–60. Springer, May 2001.

8. Luca Cardelli and Andrew D. Gordon. Ambient logic. Technical report, Microsoft,
2002.

9. Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. Information and Computation, 173:82–120, 2002.

10. Suresh Jagannathan. Continuation-based transformations for coordination lan-
guages. Theoretical Computer Science, 240(1):117–146, 2000.

11. Limin Jia and David Walker. Modal proofs as distributed programs. Technical
Report TR-671-03, Princeton University, August 2003.

12. Limin Jia and David Walker. Modal proofs as distributed programs. In European
Symposium on Programming Languages, April 2004.

13. D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: a high-performance parallel
lisp. In Proceedings of the ACM SIGPLAN 1989 Conference on Programming
language design and implementation, pages 81–90. ACM Press, 1989.

14. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes
(I & II). Information and Computation, 100(1):1–40 & 41–77, 1992.

15. Jonathan Moody. Modal logic as a basis for distributed computation. Technical
Report CMU-CS-03-194, Carnegie Mellon University, October 2003.

16. Jonathan Moody. Logical mobility and locality types (extended report). Technical
Report CMU-CS-05-128, CMU, 2005.

17. R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for access control.
Theoretical Computer Science, 240(1):215–254, 2000. Klaim and tuple-spaces.

18. Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511–540, August 2001.

19. António Ravara, Ana G. Matos, Vasco T. Vasconcelos, and Lúıs Lopes. Lexi-
cally scoped distribution: what you see is what you get. In Foundations of Global
Computing. Elsevier, 2003.

20. Alex K. Simpson. Proof Theory and Semantics of Intuitionistic Modal Logic. PhD
thesis, University of Edinburgh, 1994.

21. Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric
modal lambda calculus for distributed computing. In LICS (to appear), 2004.

22. Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric
modal lambda calculus for distributed computing. Technical Report CMU-CS-04-
105, Carnegie Mellon University, 2004.

Unwinding Conditions for Security
in Imperative Languages�

Annalisa Bossi1, Carla Piazza1,2, and Sabina Rossi1

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia,
via Torino 155, 30172 Venezia, Italy

2 Dipartimento di Matematica ed Informatica, Università degli Studi di Udine,
via Le Scienze 206, 33100 Udine, Italy

{bossi, piazza, srossi}@dsi.unive.it

Abstract. We study unwinding conditions for the definition of non-
interference properties of a simple imperative language, admitting par-
allel executions on a shared memory. We present different classes of
programs obtained by instantiating a general unwinding framework and
show that all the programs in these classes satisfy the non-interference
principle. Moreover, we introduce a subclass of secure programs which is
compositional with respect to the language constructors and we discuss
verification techniques.

1 Introduction

The problem of ensuring that a given program respects the security level of its
variables has been deeply investigated for a variety of programming languages
and by many authors. We refer the reader to [16] for a clear and wide overview
of the various proposals. All of these proposals accomplish the non-interference
principle introduced by Goguen and Meseguer [8] which asserts that secret input
data cannot be inferred through the observation of non confidential outputs.
Beside the approaches based on formal methods for controlling information flow
we find formalizations of non-interference in terms of behavioural equivalences,
e.g., [6, 14], type-systems, e.g., [16, 19], and logical formulations, e.g., [2, 3].

In the context of process algebra, security properties are often expressed in
terms of unwinding conditions [9] which demand properties of individual actions
and are easier to handle with respect to global conditions. Intuitively, an un-
winding condition requires that each high level transition is simulated in such a
way that a low level observer cannot infer whether a high level action has been
performed or not. Thus the low level observation of the process is not influenced
in any way by its high behaviour.

In our previous works (see [4] for an overview) we studied many information
flow security properties for the Security Process Algebra (SPA) [6] and char-

� This work has been partially supported by the EU Contract IST-2001-32617 and the
FIRB project RBAU018RCZ.

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 85–100, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

86 A. Bossi, C. Piazza, and S. Rossi

acterized them in terms of unwinding conditions. In particular, we introduced
a generalized unwinding condition which can be instantiated to define security
properties and we identified classes of secure processes which can be constructed
in a compositional way.

In this paper we show how our framework can be used also to define non-
interference security properties for a simple imperative language, admitting par-
allel executions on a shared memory. We extend the language IMP defined in
[20] by partitioning the locations (variables) into two levels: a public level and a
confidential one and by adding a parallel composition operator.

We present a generalized unwinding condition for our language and study
three different classes of programs obtained by instantiating the unwinding
framework. These three instances are based on a notion of low level bisimu-
lation and allow us to express timing-sensitive security properties for imperative
languages. In particular, we show that all the programs in these classes satisfy
the non-interference principle. Moreover, we introduce a subclass of secure pro-
grams which is compositional with respect to the language constructors. This
class is useful to define proof systems which allow one both to verify and to build
programs which are secure by construction.

The paper is organized as follows. In Section 2 we introduce the language to-
gether with its syntax and semantics. In Section 3 we define a general unwinding
schema for our imperative language and study three different instantiations of it.
We also prove a soundness theorem with respect to the standard non-interference
property. In Section 4 we define a compositional class of secure programs and
discuss its verification. Finally, in Section 5 we draw some conclusions.

2 The Language: Syntax and Semantics

The language we consider is an extension of the IMP language defined in [20]
where parallel executions are admitted and the locations (variables) are par-
titioned into two levels: a public level and a confidential one. Intuitively, the
values contained in the confidential locations are accessible only to authorized
users (high level users), while the values in the public locations are available to
all the users. We present an operational semantics and a notion of behavioral
equivalence for our language which will be at the basis of our security properties.
The aim of our properties is to detect any flow of information from high level to
low level locations, i.e., at any point of the execution the values in the low level
locations have not to depend on high level inputs. In our operational semantics
programs are associated to labelled transition systems, i.e., graphs with labels on
the edges and on the nodes. The labels on the nodes correspond to the states
of the locations and are used in the definition of the behavioral equivalence.
The labels on the edges denote the level (high or low) of transitions, i.e., they
individuate the transitions which depend on the values of high level locations.

Let R be the set of real numbers, T = {true, false} be the set of boolean
values, L be a set of low level locations and H be a set of high level locations,
with L ∩H = ∅. The set Aexp of arithmetic expressions is defined by:

Unwinding Conditions for Security in Imperative Languages 87

a ::= r |X | a0 + a1 | a0 − a1 | a0 ∗ a1

where r ∈ R and X ∈ L∪H. The set Bexp of boolean expressions is defined by:

b ::= true | false | (a0 = a1) | (a0 ≤ a1) | ¬b | b0 ∧ b1 | b0 ∨ b1

where a0, a1 ∈ Aexp.
We say that an arithmetic expression a is confidential, denoted by a ∈ high, if

there is a high level location which occurs in it. Otherwise we say that a is public,
denoted by a ∈ low. Similarly, we say that a boolean expression b is confidential,
denoted by b ∈ high, if there is a confidential arithmetic expression which occurs
in it. Otherwise we say that b is public, denoted by b ∈ low. This notion of
confidentiality, both for arithmetic and boolean expressions, is purely syntactic.
Notice that a high level expression can contain low level locations, i.e., its value
can depend on the values of low level locations. This reflects the idea that a high
level user can read both high and low level data.

The set Prog of programs of our language is defined as follows:

P ::= skip |X := a | P0;P1 | if b then P0 else P1 | while b do P | P0||P1

where a ∈ Aexp, X ∈ L ∪H, and b ∈ Bexp.
A high program is a program which only uses high level locations (i.e., it

syntactically contains only high level variables). We denote by ProgH the set of
all high programs.

Example 1. Consider the program P ≡ L := H, where H is a high level location
and L is a low level location. P consists of a unique assignment instruction. Its
effect is to assign to the low level location L the value contained in the high level
location H. Hence, after the execution of P the low level user can read the high
level data contained in H by reading L. �

The operational semantics of our language is based on the notion of state. A
state σ is a function which assigns to each location a real, i.e., σ : L ∪H −→ R.
Given a state σ, we denote by σ[X/r] the state σ′ such that σ′(X) = r and
σ′(Y) = σ(Y) for all Y = X. Moreover, we denote by σL the restriction of σ to
the low level locations and we write σ =L θ for σL = θL.

Given an arithmetic expression a ∈ Aexp and a state σ, the evaluation of a
in σ, denoted by 〈a, σ〉 → r with r ∈ R, is defined as in [20]. Similarly, 〈b, σ〉 → v
with b ∈ Bexp and v ∈ {true, false}, denotes the evaluation of a boolean
expression b in a state σ and is defined as in [20].

The operational semantics of our programs is expressed in terms of state
transitions. A transition from a program P and a state σ has the form 〈P, σ〉 ε→
〈P ′, σ′〉 where P ′ is either a program or end (termination) and ε ∈ {high, low}
stating that the transition is either confidential or public. Let P = Prog∪{end}
and Σ be the set of all the possible states. In Fig. 1 we define the operational
semantics of 〈P, σ〉 ∈ P×Σ by structural induction on P .

For each pair 〈P, σ〉, where P is a program and σ is a state, the semantic rules
define a labelled transition system (LTS) whose nodes are elements of P×Σ and

88 A. Bossi, C. Piazza, and S. Rossi

〈skip, σ〉 low→ 〈end, σ〉

〈a, σ〉 → r

〈X := a, σ〉 ε→ 〈end, σ[X/r]〉
a ∈ ε

〈P0, σ〉 ε→ 〈P ′
0, σ

′〉

〈P0; P1, σ〉 ε→ 〈P ′
0; P1, σ

′〉
P ′

0 �≡ end
〈P0, σ〉 ε→ 〈end, σ′〉

〈P0; P1, σ〉 ε→ 〈P1, σ
′〉

〈b, σ〉→ true

〈if b then P0 else P1, σ〉 ε→ 〈P0, σ〉
b ∈ ε

〈b, σ〉→ false

〈if b then P0 else P1, σ〉 ε→ 〈P1, σ〉
b ∈ ε

〈b, σ〉→ false

〈while b do P, σ〉 ε→ 〈end, σ〉
b ∈ ε

〈b, σ〉→ true

〈while b do P, σ〉 ε→ 〈P ; while b do P, σ〉
b ∈ ε

〈P0, σ〉 ε→ 〈P ′
0, σ

′〉

〈P0||P1, σ〉 ε→ 〈P ′
0||P1, σ

′〉
P ′

0 �≡ end
〈P0, σ〉 ε→ 〈end, σ′〉

〈P0||P1, σ〉 ε→ 〈P1, σ
′〉

〈P1, σ〉 ε→ 〈P ′
1, σ

′〉

〈P0||P1, σ〉 ε→ 〈P0||P ′
1, σ

′〉
P ′

1 �≡ end
〈P1, σ〉 ε→ 〈end, σ′〉

〈P0||P1, σ〉 ε→ 〈P0, σ
′〉

Fig. 1. The operational semantics

whose edges are labelled with high or low. The notion of reachability does not
depend on the labels of the edges. We use 〈P, σ〉 → 〈P ′, σ′〉 to denote 〈P, σ〉 ε→
〈P ′, σ′〉 with ε ∈ {low, high}. We write 〈P0, σ0〉 →n 〈Pn, σn〉 for 〈P0, σ0〉 →
〈P1, σ1〉 → · · · → 〈Pn−1, σn−1〉 → 〈Pn, σn〉. Given 〈P, σ〉 ∈ Prog×Σ, we denote
by Reach(〈P, σ〉) the set of pairs 〈P ′, σ′〉 such that there exists n ≥ 0 and
〈P, σ〉 →n 〈P ′, σ′〉. Moreover we denote by Reach(P) the set of programs P ′

such that 〈P ′, σ′〉 ∈ Reach(〈P, σ〉) for some states σ and σ′.

Example 2. Assume L is a low level location and σ is a state such that σ(L) = 1.
Consider the program P1 ≡ while (L ≤ 1) do L := L + 1; we obtain the
following LTS

Unwinding Conditions for Security in Imperative Languages 89

〈P1, σ〉
low↓

〈L := L + 1; while (L ≤ 1) do L := L + 1, σ〉
low↓

〈while (L ≤ 1) do L := L + 1, σ[L/2]〉
low↓

〈end, σ[L/2]〉

Consider now the program P2 ≡ if (H ≤ 3) then L := L+1 else L := L+2
where H is a high level location. Let σ1, σ2 be states such that σ1(H) ≤ 3 and
σ2(H) > 3. The LTS’s associated to the pairs 〈P2, σ1〉 and 〈P2, σ2〉 are

〈P2, σ1〉
high↓

〈L := L + 1, σ1〉
low↓

〈end, σ1[L/σ1(L) + 1]〉

〈P2, σ2〉
high↓

〈L := L + 2, σ2〉
low↓

〈end, σ2[L/σ2(L) + 2]〉

In this case the final value of the low level location depends on the initial value
of the high level one. Hence a low level user can infer whether H is less or equal
than 3 or not just by observing the initial and final values of L. �

We are interested in a notion of behavioural equivalence which equates two
programs if they are indistinguishable for a low level observer.

Example 3. Consider the programs H := 1;L := 1 and H := 2;L := 1, where H
is a high level location while L is a low level location. Given a state σ the LTS’s
associated to the two programs are respectively

〈H := 1;L := 1, σ〉 〈H := 2;L := 1, σ〉
low ↓ low ↓

〈L := 1, σ[H/1]〉 〈L := 1, σ[H/2]〉
low ↓ low ↓

〈end, σ[H/1, L/1]〉 〈end, σ[H/2, L/1]〉

We would like to consider this two programs equivalent for a low level observer
which can only read the values in the low level locations. �

We consider two programs equivalent from the low level point of view if they
are low level bisimilar as defined below.

Definition 1 (Low Level Bisimulation). A binary symmetric relation B over
P×Σ is a low level bisimulation if for each (〈P, σ〉, 〈Q, θ〉) ∈ B it holds that:

– σ =L θ, i.e., the states coincide on low level locations;
– if 〈P, σ〉 → 〈P ′, σ′〉 then there exists 〈Q′, θ′〉 such that 〈Q, θ〉 → 〈Q′, θ′〉 and

(〈P ′, σ′〉, 〈Q′, θ′〉) ∈ B.

90 A. Bossi, C. Piazza, and S. Rossi

Two pairs 〈P, σ〉 and 〈Q, θ〉 ∈ P×Σ are low level bisimilar, denoted by 〈P, σ〉 ∼l

〈Q, θ〉 if there exists a low level bisimulation B such that (〈P, σ〉, 〈Q, θ〉) ∈ B.
Two programs P and Q are said to be low level bisimilar, denoted by P �l Q, if
for each σ, θ ∈ Σ it holds that if σ =L θ then 〈P, σ〉 ∼l 〈Q, θ〉.

A partial equivalence relation (per) [17] is a symmetric and transitive relation.

Lemma 1. The relation ∼l⊆ (P×Σ)2 is the largest low level bisimulation and it
is an equivalence relation. The relation �l⊆ P2 is a partial equivalence relation.

Proof. If 〈P, σ〉 ∼l 〈Q, θ〉, then there exists a low level bisimulation B such that
it holds (〈P, σ〉, 〈Q, θ〉) ∈ B. Hence if 〈P, σ〉 → 〈P ′, σ′〉 we have that 〈Q, θ〉 →
〈Q′, θ′〉 with (〈P ′, σ′〉, 〈Q′, θ′〉) ∈ B, i.e., 〈P ′, σ′〉 ∼l 〈Q′, θ′〉. So we have that ∼l

is a low level bisimulation. It is the largest since by definition all the other low
level bisimulations are included in it.

It is easy to prove that ∼l is reflexive and symmetric. Transitivity follows
from the fact that if B1,B2 are low level bisimulations then the relation B1 ◦ B2,
where ◦ is the composition of relations, is still a low level bisimulation.

The relation �l⊆ P2 is symmetric and transitive since ∼l is symmetric and
transitive. �

The relation �l is not reflexive. For example, the program L := H is not
low level bisimilar to itself, as the low equality of states can be broken by a
computation step.

Example 4. Consider the programs P ≡ H := H + 1;L := L + 1 and Q ≡ H :=
H + 2;L := L+ 1, where H is a high level location and L is a low level location.
It is easy to prove that P �l Q. In fact, a low level user which can only observe
the low level location L cannot distinguish the two programs. �

The notion of bisimulation as observation equivalence assumes that during
each computation step a user can read the values in the locations. If we are
working with a pure imperative language this assumption could seem too strong,
since usually the values are read only at the end of the computation. However, if
we consider parallel executions, during each step of the computation one of the
parallel components could store the partial results of the other components.

Example 5. Let P ≡ L := H;L := 1 and Q ≡ H := H;L := 1, where H is a
high level location and L is a low level location. The programs P and Q could be
considered equivalent if one assumes that the low level user can observe the low
level locations only at the end of the computation. However, they are not low
level bisimilar. Indeed, if R ≡ L1 := L with L1 being a low level location, then
the programs P ||R and Q||R are not equivalent from the low level point view. In
fact, there is one execution of P ||R in which the low level user can discover the
high level value of H by reading L1. This is never possible in Q||R. �

The relation ∼l equates programs which simulate each other step by step.
This is stated in the following lemma. In the next section we will exploit such
relation to define security properties which imply the timing-sensitive (lockstep)
non-interference principle studied in, e.g., [15, 18].

Unwinding Conditions for Security in Imperative Languages 91

Lemma 2. Let P and Q be two programs and σ and θ be two states such that
〈P, σ〉 ∼l 〈Q, θ〉. If 〈P, σ〉 →n 〈P ′, σ′〉 then there exists Q′ and θ′ such that
〈Q, θ〉 →n 〈Q′, θ′〉 and 〈P ′, σ′〉 ∼l 〈Q′, θ′〉, and viceversa.

Proof. By induction on n.

– Base: n = 1. We immediately have the thesis by definition of ∼l.
– Step: n = m + 1 and we proved the thesis for m. We have that 〈P, σ〉 →m

〈P ′′, σ′′〉 → 〈P ′, σ′〉. By inductive hypothesis we get 〈Q, θ〉 →m 〈Q′′, θ′′〉 with
〈P ′′, σ′′〉 ∼l 〈Q′′, θ′′〉. By definition of bisimulation we get the thesis. �

Example 6. Consider the programs P ≡ if (L = 0) then L := L+1 else L := 2
and Q ≡ if (L = 0) then {L := L + 1; skip} else L := 2. Although, for all
σ and θ such that σ =L θ, P and Q execute exactly the same assignment
commands, P �l Q. In fact the two programs exhibit different timing behaviours
due to the presence of the skip command in the first branch of Q. �

3 Unwinding Conditions for Security of IMP

In [4] we introduced a general framework to define classes of secure processes
written in the SPA language, an extension of Milner’s CCS [12]. The frame-
work is based on a generalized unwinding condition which is a local persistent
property parametric with respect to a low behavioral equivalence, a transition
relation independent from the high level behavior and a reachability relation.
We proved that many non-interference properties can be seen as instances of
this framework. In all the considered cases, the three relations are defined on
the processes LTS’s and thus the corresponding unwinding classes depend only
on the operational semantics of processes. Following a similar approach, we in-
troduce a generalized unwinding condition to define classes of programs which
is parametric with respect to

– an observation equivalence relation � which equates two pairs 〈P, σ〉 and
〈Q, θ〉 if they are indistinguishable for a low level observer,

– a binary relation ↪→ which, from the low level point of view, is independent
from the values of high locations, and

– a reachability function R associating to each pair 〈P, σ〉 the set of pairs
〈F,ψ〉 which, in some sense, are reachable from 〈P, σ〉.

Definition 2 (Generalized Unwinding). Let � be a binary equivalence rela-
tion over Prog×Σ, ↪→ be a binary relation over Prog×Σ and R be a function
from Prog × Σ to ℘(Prog × Σ). We define the unwinding class W(�, ↪→,R)
as follows:

W(�, ↪→,R) def= {〈P, σ〉 ∈ Prog ×Σ | ∀ 〈F,ψ〉 ∈ R(〈P, σ〉)
if 〈F,ψ〉 high→ 〈G,ϕ〉 then ∃〈M,μ〉 such that 〈F,ψ〉 ↪→ 〈M,μ〉 and
〈G,ϕ〉 � 〈M,μ〉}.

92 A. Bossi, C. Piazza, and S. Rossi

The intuition behind the unwinding condition is that any high level transition
should be simulated by a high independent transition guaranteeing that the high
level transitions have no influence on the low level observation.

We say that the function R is transitive if 〈F ′′, ψ′′〉 ∈ R(〈F ′, ψ′〉) and
〈F ′, ψ′〉 ∈ R(〈F,ψ〉) imply 〈F ′′, ψ′′〉 ∈ R(〈F,ψ〉), i.e., it is a transitive rela-
tion. If R is transitive, the generalized unwinding condition defined above allows
us to specify properties which are closed under R. In this sense we say that our
properties are persistent. The next lemma follows immediately by Definition 2.

Lemma 3. Let R be a transitive reachability function and 〈P, σ〉 ∈ Prog ×Σ.
If 〈P, σ〉 ∈ W(�, ↪→,R) then 〈F,ψ〉 ∈ W(�, ↪→,R) for all 〈F,ψ〉 ∈ R(〈P, σ〉).
Proof. Let R be transitive, 〈P, σ〉 ∈ W(�, ↪→,R), and 〈F,ψ〉 ∈ R(〈P, σ〉). If
〈F ′, ψ′〉 ∈ R(〈F,ψ〉), then by transitivity we have that 〈F ′, ψ′〉 ∈ R(〈P, σ〉).
Hence we get that if 〈F ′, ψ′〉 high→ 〈G′, ϕ′〉 then 〈F ′, ψ′〉 ↪→ 〈M ′, μ′〉 with 〈G′, ϕ′〉 �
〈M ′, μ′〉, i.e., the thesis. �

Below we instantiate our generalized unwinding condition by exploiting the
notion of low level bisimulation ∼l as behavioral equivalence and by introducing
a suitable high independent transition relation ���.

Definition 3 (���). The relation ��� on Prog ×Σ is defined as follows:
〈F,ψ〉 ��� 〈M,μ〉 if for each π such that π =L ψ there exist R and ρ such that
〈F, π〉 → 〈R, ρ〉 and 〈R, ρ〉 ∼l 〈M,μ〉.

Example 7. Let F ≡ if (H > 1) then M else R where M ≡ H := 1;L :=
L + 1 and R ≡ H := 2;L := L + 1, and ψ be such that ψ(H) > 1. In this case
〈F,ψ〉 ��� 〈M,ψ〉. Indeed, for each π such that π =L ψ either 〈F, π〉 → 〈M,π〉
or 〈F, π〉 → 〈R, π〉 and both 〈M,π〉 ∼l 〈M,ψ〉 and 〈R, π〉 ∼l 〈M,ψ〉.

Consider now the program F ≡ L := 2;R and R ≡ if (H > 1) then {H :=
1;L := 2} else {H := 2;L := 1}. In this case does not exist any 〈M,μ〉 such
that 〈F,ψ〉 ��� 〈M,μ〉. Indeed, if ψ and π are two states such that ψ =L π,
ψ(H) > 1 and π(H) ≤ 1, then 〈F,ψ〉 → 〈R,ψ[L/2]〉 and 〈F, π〉 → 〈R, π[L/2]〉
but 〈R,ψ[L/2]〉 ∼l 〈R, π[L/2]〉. �

By Definition 3 and by transitivity of ∼l we get the following characterization
of our unwinding condition.

Proposition 1. Let R be a reachability function, P be a program, and σ be a
state. 〈P, σ〉 ∈ W(∼l, ���,R) if and only if for each 〈F,ψ〉 ∈ R(〈P, σ〉) it holds
that if 〈F,ψ〉 high→ 〈G,ϕ〉 then for each π such that π =L ψ there exist R and ρ
such that 〈F, π〉 → 〈R, ρ〉 and 〈R, ρ〉 ∼l 〈G,ϕ〉.

As far as the function R is concerned, we consider three different instan-
tiations: Rlts which coincides with the rechability relation Reach in the LTS,
Rhpar which intuitively represents reachability under the parallel composition
with any high level program, and Rpar which denotes reachability under the
parallel composition with any program.

The class of secure imperative programs SIMPlts is based on function Rlts.

Unwinding Conditions for Security in Imperative Languages 93

Definition 4 (SIMPlts). Let Rlts be the function Reach. A program P is in
SIMPlts if for each state σ, 〈P, σ〉 ∈ W(∼l, ���,Rlts).

Example 8. Consider the program Q ≡ H := L, where H is a high level location
and L is a low level location. The program Q is in SIMPlts. In fact, the low
level execution is not influenced by the values in the high level location.

Consider again the program P ≡ L := H;L := 1 of Example 5, where H is a
high level location and L is a low level location. It is easy to prove that for any
σ ∈ Σ, 〈P, σ〉 ∈ W(∼l, ���,Rlts). In fact, let for instance σ(H) = 1, σ(L) = 0,
θ(H) = 2, θ(L) = 0. It holds that σ =L θ, but after the execution of the first
high level transition we reach the states σ′ and θ′, where σ′(L) = 1 = θ′(L) = 2.

Consider now R ≡ H := 4;L := 1; if (L = 1) then skip else L := H.
The program R belongs to SIMPlts. In fact, the first branch of the conditional
is always executed independently of the value in the high level location. �

SinceRlts is transitive, by Lemma 3 we get thatW(∼l, ���,Rlts) is persistent,
i.e., if a program P starting in a state σ is secure then also each pair 〈P ′, σ′〉
reachable from 〈P, σ〉 does. However, in general it does not hold that if a program
P is in SIMPlts then also each program P ′ reachable from P is in SIMPlts.
This is illustrated in the following example.

Example 9. Let P ≡ L := 0; if L := 1 then L := H else skip. It holds
that P ∈ SIMPlts since, for each state σ, 〈P, σ〉 will never perform any high
transition. Moreover, the program P ′ ≡ if L := 1 then L := H else skip
is reachable from P but it does not belong to SIMPlts. �

We now introduce a more restrictive class of secure imperative programs,
namely SIMPhpar, which is based on the reachability function Rhpar below.

Definition 5. The function Rhpar from Prog×Σ to ℘(Prog×Σ) is defined by:
Rhpar(〈P0, σ0〉) = {〈Pn, θn〉 | n ≥ 0, ∃P1, . . . , Pn−1, ∃σ1, . . . , σn,∃ θ0, . . . , θn−1

such that σi =L θi and 〈Pi, θi〉 → 〈Pi+1, σi+1〉 for i ∈ [0 . . n−1] and σn =L θn}.
Intuitively, 〈F,ψ〉 ∈ Rhpar(〈P, σ〉) if 〈F,ψ〉 is reachable from 〈P ||PH , σ〉 where

PH is a high level program.

Lemma 4. Let P be a program and σ be a state. 〈F,ψ〉 ∈ Rhpar(〈P, σ〉) if and
only if F is a subprogram of P and 〈F,ψ〉 ∈ Reach(〈P ||PH , σ〉) for some high
program PH .

Proof. (sketch) ⇐) The parallel composition of two programs performs the inter-
leaving of the actions of the two components. Hence, when executing 〈P ||PH , σ〉,
since PH can only modify high level variables, each time an action 〈P i

H , σi〉 →
〈P i+1

H , θi〉 of PH is performed, we have that θi =L σi. On the other hand, when
an action 〈Pi, σi〉 → 〈Pi+1, σi+1〉 of P is performed then we can define θi = σi.
Hence, ∃σ1, . . . , σn, θ0, . . . , θn−1 such that σi =L θi and 〈Pi, θi〉 → 〈Pi+1, σi+1〉
for i ∈ [0 . . n− 1] where 〈P0, σ0〉 ≡ 〈P, σ〉 and 〈Pn, θn〉 ≡ 〈F,ψ〉.

⇒) In each step of the computation PH can only change the value of high
level variables, hence we immediately get the thesis. �

94 A. Bossi, C. Piazza, and S. Rossi

Definition 6 (SIMPhpar). A program P is in SIMPhpar if for each state σ,
〈P, σ〉 ∈ W(∼l, ���,Rhpar).

It is clear that the class SIMPhpar is more restrictive than SIMPlts.

Lemma 5. SIMPhpar ⊆ SIMPlts

Example 10. Consider the program P ≡ H := 1; if (H = 1) then {skip;L :=
1} else {H := 1;L := H}, where H is a high level location and L is a low level
location. The program P belongs to the class SIMPlts but it does not belong to
the class SIMPhpar. In fact, given an initial state σ there exists a state ψ such

that the pair 〈L := H,ψ〉 belongs to Rhpar(〈P, σ〉). Moreover 〈L := H,ψ〉 high→
〈end, ϕ〉 but clearly it does not hold that for each π such that π =L ψ there exist
R and ρ such that 〈L := H,π〉 → 〈R, ρ〉 and 〈R, ρ〉 ∼l 〈end, ϕ〉.

Notice that if we consider the program Q ≡ H := 3 then P ||Q is not in
SIMPlts although both P and Q are in SIMPlts. �

It is easy to prove that the reachability function Rhpar is transitive. Hence
by Lemma 3 the class W(∼l, ���,Rhpar) is persistent. Indeed, we have that if
a program P starting in a state σ is in W(∼l, ���,Rhpar) then also each pair
〈P ′, σ′〉 ∈ Rhpar(〈P, σ〉) is in W(∼l, ���,Rhpar). However, as for SIMPlts, in
general it does not hold that if a program P is in SIMPhpar then also each
program P ′ reachable from P is in SIMPhpar. In order to see this, it is sufficient
to consider again the program of Example 9.

Finally, we introduce the class of secure imperative programs SIMPpar by
using the reachability function Rpar defined below.

Definition 7. The function Rpar from Prog×Σ to ℘(Prog×Σ) is defined as
follows:Rpar(〈P0, σ0〉) = {〈Pn, θn〉 | n ≥ 0, θn ∈ Σ, ∃P1, . . . , Pn−1, ∃σ1, . . . , σn,
∃θ0, . . . , θn−1 such that 〈Pi, θi〉 → 〈Pi+1, σi+1〉 for i ∈ [0 . . n− 1]}.

Intuitively, a pair 〈F,ψ〉 is in Rpar(〈P, σ〉) if 〈F,ψ〉 is reachable from 〈P ||Q, σ〉
for some program Q. The following lemma is similar to Lemma 4.

Lemma 6. Let P be a program and σ be a state. 〈F,ψ〉 ∈ Rpar(〈P, σ〉) if and
only if F is a subprogram of P and 〈F,ψ〉 ∈ Reach(〈P ||Q, σ〉) for a program Q.

Definition 8 (SIMPpar). A program P is in SIMPpar if for each state σ,
〈P, σ〉 ∈ W(∼l, ���,Rpar).

The class SIMPpar is more restrictive than SIMPhpar.

Lemma 7. SIMPpar ⊆ SIMPhpar ⊆ SIMPlts.

Example 11. Consider the program P ≡ H := 4;L := 1; if (L = 1) then skip
else L := H. It belongs to SIMPlts and SIMPhpar but it does not belong to
SIMPpar. In fact given an initial state σ there exists a state ψ such that the

pair 〈L := H,ψ〉 belongs to Rpar(〈P, σ〉). Moreover 〈L := H,ψ〉 high→ 〈end, ϕ〉 but
clearly it does not hold that for each π such that π =L ψ there exist R and ρ
such that 〈L := H,π〉 → 〈R, ρ〉 and 〈R, ρ〉 ∼l 〈end, ϕ〉. �

Unwinding Conditions for Security in Imperative Languages 95

The reachability function Rpar is transitive and then, by Lemma 3, the class
W(∼l, ���,Rpar) is persistent in the sense that if 〈P, σ〉 is in W(∼l, ���,Rpar)
then also each pair 〈P ′, σ′〉 ∈ Rpar(〈P, σ〉) is in W(∼l, ���,Rpar). Moreover,
differently from SIMPlts and SIMPhpar, if a program P is in SIMPpar then
also each program P ′ reachable from P is in SIMPpar.

Lemma 8. Let P be a program. If P ∈ SIMPpar then for all P ′ ∈ Reach(P),
P ′ ∈ SIMPpar.

Proof. Let P ′ ∈ Reach(P), i.e., 〈P ′, σ′〉 ∈ Reach(〈P, σ〉) for some σ and σ′. By
definition of Rpar, 〈P ′, θ〉 ∈ Rpar(〈P, σ〉) for all state θ. Hence, by persistence of
W(∼l, ���,Rpar), 〈P ′, θ〉 ∈ W(∼l, ���,Rpar), i.e., P ′ ∈ SIMPpar. �

The three instances of our generalized unwinding condition introduced above
allow us to express timing-sensitive notions of secuirity for imperative programs.
This is a consequence of the fact that ∼l equates programs which exhibit the
same timing behavior (see Lemma 2).

Example 12. Let P ≡ if (H = 0) then {H := H + 1; skip} else H := 2. The
program P does not belong to any class SIMP∗ with ∗ ∈ {lts, hpar, par}. This
is due to the fact that if 〈P, σ〉 high→ 〈{H := H+1; skip}, σ〉 for some state σ then
it does not hold that for each θ such that σ =L θ there exist R and θ′ such that
〈P, θ〉 → 〈R, θ′〉 and 〈{H := H + 1; skip}, σ〉 ∼l 〈R, θ′〉. In fact, if θ(H) = 0,
〈P, θ〉 → 〈H := 2, θ〉 but 〈{H := H +1; skip}, σ〉 ∼l 〈H := 2, θ〉 because of their
different timing behaviour. �

In the previous section we observed that the relation �l is not reflexive.
However, �l is reflexive over the set of programs belonging to SIMPlts (and
then, by Lemma 7, to SIMPhpar and SIMPpar).

Lemma 9. Let P be a program. If P ∈ SIMPlts then P �l P .

Proof. First, the following claim follows by structural induction on programs.

Claim. For each ψ and π such that ψL = πL, if 〈F,ψ〉 low→ 〈F ′, ψ′〉 then 〈F, π〉 low→
〈F ′, π′〉 with π′

L = ψ′
L.

Now assume that P ∈ SIMPlts. Then for all states σ and θ, 〈P, σ〉, 〈P, θ〉 ∈
W(∼l, ���,Rlts). Hence, in order to prove that P �l P , it is sufficient to show
that for all σ and θ such that 〈P, σ〉, 〈P, θ〉 ∈ W(∼l, ���,Rlts) and σL = θL, it
holds 〈P, σ〉 ∼l 〈P, θ〉. Consider the binary relation

S = {(〈P, σ〉, 〈P, θ〉) | 〈P, σ〉, 〈P, θ〉 ∈ W(∼l, ���,Rlts), σL = θL}

∪ {(〈P, σ〉, 〈Q, θ〉)| 〈P, σ〉 ∼l 〈Q, θ〉}.
We show that S is a low level bisimulation.

If 〈P, σ〉 high→ 〈P ′, σ′〉, then since 〈P, σ〉 ∈ W(∼l, ���,Rlts), by Proposition 1,
we have that 〈P, θ〉 → 〈P ′′, θ′〉 with 〈P ′, σ′〉 ∼l 〈P ′′, θ′〉. Hence, by definition of
S, (〈P ′, σ′〉, 〈P ′′, θ′〉) ∈ S.

96 A. Bossi, C. Piazza, and S. Rossi

If 〈P, σ〉 low→ 〈P ′, σ′〉, then by Claim 3 we have that 〈P, θ〉 low→ 〈P ′, θ′〉 with
σ′

L = θ′L. By Lemma 3, since Rlts is transitive, we have that W(∼l, ���,Rlts) is
persistent, i.e., both 〈P ′, σ′〉 ∈ W(∼l, ���,Rlts) and 〈P ′, θ′〉 ∈ W(∼l, ���,Rlts).
Hence we have that (〈P ′, σ′〉, 〈P ′, θ′〉) ∈ S, i.e., the thesis. �

The converse of Lemma 9 does not hold as illustrated below.

Example 13. Consider the program P ≡ if (H = 1) then P0 else P1 where
P0 ≡ while (H > 1) do skip and P1 ≡ skip. In this case P �l P , i.e., for all
states σ and θ such that σ =L θ, 〈P, σ〉 ∼l 〈P, θ〉. Indeed, if σ and θ are such
that both σ(H) = 1 and θ(H) = 1, the LTS’s of 〈P, σ〉 and 〈P, θ〉 have the form

〈P, σ〉
↓

〈P0, σ〉
↓

〈end, σ〉

〈P, θ〉
↓

〈P0, θ〉
↓

〈end, θ〉

and thus 〈P, σ〉 ∼l 〈P, θ〉. The case in which both σ(H) = 1 and θ(H) = 1 is
analogous. On the other hand, if σ(H) = 1 and θ(H) = 1 the LTS’s of 〈P, σ〉
and 〈P, θ〉 have the form

〈P, σ〉
↓

〈P0, σ〉
↓

〈end, σ〉

〈P, θ〉
↓

〈P1, θ〉
↓

〈end, θ〉

and again 〈P, σ〉 ∼l 〈P, θ〉.
However, the program P ∈ SIMPlts. In fact 〈P0, σ〉 ∈ Reach(〈P, σ〉) and

〈P0, σ〉
high→ 〈end, σ〉 but it does not hold that for all ρ such that σ =L ρ there

exist R and ρ′ such that 〈P0, ρ〉 → 〈R, ρ′〉 and 〈end, σ〉 ∼l 〈R, ρ′〉. Indeed, if
ρ(H) > 1, 〈P0, ρ〉 → 〈skip;P0, ρ〉 and 〈end, σ〉 ∼l 〈skip;P0, ρ〉. This is due to
the fact that the subprogram P0 of P is not in SIMPlts. �

Finally, we show that our security properties expressed in terms of unwinding
conditions imply the standard non-interference principle which requires that high
level values do not affect the low level observation.

Theorem 1 (Soundness). Let P be a program such that P ∈ SIMP∗ with
∗ ∈ {lts, hpar, par}. For each state σ and θ such that σ =L θ,

– 〈P, σ〉 →n 〈end, σ′〉 if and only if 〈P, θ〉 →n 〈end, θ′〉 with σ′
L = θ′L.

Proof. By Lemma 9, since σ =L θ, we have that 〈P, σ〉 ∼l 〈P, θ〉. Then, by
Lemma 2, we get that 〈P, θ〉 reaches a pair 〈P ′, θ′〉 with 〈P ′, θ′〉 ∼l 〈end, σ′〉.
Hence we immediately have σ′ =L θ′. Moreover, since end is not bisimilar to any
program, it must be P ′ ≡ end. �

Unwinding Conditions for Security in Imperative Languages 97

4 Compositionality

The classes SIMPlts, SIMPhpar and SIMPpar introduced above are, in general,
not compositional with respect to the language constructors. In particular, they
are not compositional with respect to the parallel composition constructor as
illustrated by the following example.

Example 14. Consider the program P ≡ if (H = 1∧L = 1) then P0 else P1

where P0 ≡ if (L = 1) then skip else L := 2 while P1 ≡ if (L = 1) then
L := 3 else skip. The program P belongs to the class SIMPpar (and then
also to the classes SIMPlts and SIMPhpar). In fact, given an initial state σ,

〈P, σ〉 high→ 〈Pi, σ〉 for some i ∈ {0, 1} and for each π such that π =L σ there
always exist R and ρ such that 〈P, π〉 → 〈R, ρ〉 and 〈R, ρ〉 ∼l 〈Pi, σ〉. Now
consider the program Q ≡ L := 4 which clearly belongs to SIMPpar. We
show that the program P ||Q does not belong to SIMPlts (and thus neither to
SIMPhpar and SIMPpar). Indeed, let σ be a state such that σ(H) = σ(L) = 1.

Then 〈P ||Q, σ〉 high→ 〈P0||Q, σ〉. Now let π be a state such that π =L σ and in
particular π(L) = 1 but π(H) = 1. Hence 〈P ||Q, π〉 high→ 〈P1||Q, π〉. However,
〈P0||Q, σ〉 ∼L 〈P1||Q, π〉: in fact if the assigment L := 4 of Q is performed at the
first step, then 〈P0||Q, σ〉 ends in a state σ′ such that σ′(L) = 2 while 〈P1||Q, π〉
ends in a state π′ such that π′(L) = 3. �

Compositionality is useful both for verification and synthesis: if a property
is preserved when programs are composed, then the analysis may be performed
on subprograms and, in case of success, the program as a whole will satisfy the
desired property by construction. In the next definition we introduce a class C
of programs which is closed under composition and it is a subclass of SIMPpar

(and then also of SIMPlts and SIMPhpar).

Definition 9. Let H be a high level location, L be a low level location, ah and
bh be high level expressions, and al and bl be low level expressions. The class of
programs C is recursively defined as follows.

1. skip is in C;
2. L := al is in C;
3. H := ah is in C;
4. H := al is in C;
5. P0;P1 is in C if P0, P1 are in C;
6. if bl then P0 else P1 is in C, if P0, P1 are in C;
7. if bh then P0 else P1 is in C if P0, P1 are in C and P0 �l P1;
8. while bl do P0 is in C, if P0 is in C;
9. P0||P1 is in C, if P0, P1 are in C.

Theorem 2. The class of programs C of Definition 9 is included in SIMPpar.

Proof. We first prove the following claim.

98 A. Bossi, C. Piazza, and S. Rossi

Claim. Let G,F,R ∈ C. If ϕ =L ρ then 〈F,ϕ〉 ∼l 〈F, ρ〉. Moreover, if 〈G,ϕ〉 ∼l

〈R, ρ〉, then 〈G;F,ϕ〉 ∼l 〈R;F, ρ〉 and 〈G||F,ϕ〉 ∼l 〈R||F, ρ〉.

Proof. It is sufficient to show that

S = {(〈G;F,ϕ〉, 〈R;F, ρ〉), (〈G||F,ϕ〉, 〈R||F, ρ〉), |G,F,R ∈ C, 〈G,ϕ〉 ∼l 〈R, ρ〉}
∪{(〈F,ϕ〉, 〈F, ρ〉) | F ∈ C, ϕ =L ρ}

∪{〈F0, ϕ〉, 〈F1, ρ〉 | F0, F1 ∈ C, ϕ =L ρ, F0 ∼l F1}
∪{(〈F0, ϕ〉, 〈F1, ρ〉) | 〈F0, ϕ〉 ∼l 〈F1, ρ〉}

is a low level bisimulation.

In order to prove Theorem 2 we show that if P ∈ C, then for each F ∈ Reach(P)
and for each ψ it holds that if 〈F,ψ〉 h→ 〈G,ϕ〉, then for each π such that π =L ψ
we have 〈F, π〉 → 〈R, ρ〉 with 〈R, ρ〉 ∼l 〈G,ϕ〉. Indeed, from the fact that P ∈ C
and F ∈ Reach(P) we get that F ∈ C. We prove the thesis for a generic F ∈ C
and a generic state ψ. We proceed by structural induction on F .

The only interesting cases are F ≡ F0;F1 and F ≡ F0||F1. We consider
the case F ≡ F0;F1 since the other one is similar. If 〈F,ψ〉 h→ 〈F ′

0;F1, ϕ〉,
then we have 〈F0, ψ〉 h→ 〈F ′

0, ϕ〉. Hence by inductive hypothesis on F0 we have
〈F0, π〉 h→ 〈F ′′

0 , ρ〉 with 〈F ′
0, ϕ〉 ∼l 〈F ′′

0 , ρ〉. Then we get that 〈F, π〉 h→ 〈F ′′
0 ;F1, ρ〉

and by Claim 4 〈F ′′
0 ;F1, ρ〉 ∼l 〈F ′

0;F1, ϕ〉. If 〈F,ψ〉 h→ 〈F1, ϕ〉, then 〈F1, ψ〉 h→
〈end, ϕ〉. Hence by Claim 4 we get that 〈F1, π〉 h→ 〈end, ρ〉 with ρ =L ϕ. So,
〈F, π〉 h→ 〈F1, ρ〉, and again by Claim 4 we have 〈F1, ρ〉 ∼l 〈F1, ϕ〉. �

We conclude this section by observing that membership to the class C is
not decidable due to the presence of the low level observation equivalence �l in
point 7 of Definition 9. However, a sound but incomplete method could be find
to compute �l by applying a suitable abstraction which guarantees equivalence
up to high level locations as discussed, e.g., in [1].

5 Conclusion and Related Work

In this paper we introduced a generalized unwinding schema for the definition of
non-interference properties of programs of a simple imperative language, admit-
ting parallel executions on a shared memory. We studied three different instances
of our unwinding condition and defined a subclass of programs which is compo-
sitional with respect to the language constructors.

There is a widespread literature on secure information flow in imperative
languages (see [16] for a recent survey). A common approach is based on types
in such a way that well-typed programs do not leak secrets (see, e.g., [17, 19]).
Other approaches consider logical formulations of non-interference, e.g., [2, 3, 10],
and abstract interpretation-based formalizations, e.g., [5, 7].

As far as we know, this is the first attempt of defining security properties
of imperative languages through unwinding conditions. As observed by many

Unwinding Conditions for Security in Imperative Languages 99

authors (e.g., [11, 13]) such conditions are easier to handle and more amenable to
automated proof with respect to global conditions. Similarly to what we already
did in [4] for systems written in a process algebra, we plan to exploit unwinding
conditions for defining proof systems both to verify whether a program is secure
and to build programs which are secure by construction in an incremental way.

Finally, we observe that the properties we have defined in terms of unwind-
ing conditions characterize the security of programs againts so-called passive
attacks, i.e., low level users which try to infer the values of the high level vari-
ables just by observing the values of the low level ones. On the contrary, in
defining non-interference one usually explicitly characterize the class of active
attacks, i.e., malicious users or programs which try to directly transmit con-
fidential information to the low level observer. Some authors have proved that
there is a connection between properties characterizing passive attacks and prop-
erties involving active attacks [21]. In our approach an active attacker can be
seen as a high program which intentionally manipulates high level variables. We
can prove that if P is a secure program belonging to the class SIMPhpar (and
hence to SIMPpar) then a low level user cannot distiguish P running in parallel
with different (malicious) high programs PH and PK exhibiting the same timing
behaviour (i.e., PH �l PK).

Theorem 3. If P ∈ SIMPhpar then P ||PH �l P ||PK for all PH , PK ∈ ProgH

such that PH �l PK .

Proof. It follows from the fact that

S = {(〈P ||PH , σ〉, 〈Q||PK , θ〉)| 〈P, σ〉 ∼l 〈Q, θ〉, PH ∼l PK , PH , PK ∈ ProgH

〈P, σ〉, 〈Q, θ〉 ∈ W(∼l, ���,Rhpar)} ∪ {(〈P, σ〉, 〈Q, θ〉)| 〈P, σ〉 ∼l 〈Q, θ〉}
is a low level bisimulation ∼l. �

Intuitively, this theorem states that if a program P belongs to SIMPhpar then
even if the values of the high level variables are changed during the computation,
a low level user will never observe any difference on the values of low variables.

References

1. J. Agat. Transforming out Timing Leaks. In Proc. of ACM Symposium on Prin-
ciples of Programming Languages (POPL’00), pages 40–53. ACM Press, 2000.

2. T. Amtoft and A. Banerjee. Information Flow Analysis in Logical Form. In Pro-
ceedings of the 11th Static Analysis Symposium (SAS’04), volume 3148 of LNCS,
pages 100–115. Springer-Verlag, 2004.

3. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self Com-
position. In Proc. of the 17th IEEE Computer Security Foundations Workshop
(CSFW’04), pages 100–114. IEEE Computer Society Press, 2004.

4. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Verifying Persistent Security Prop-
erties. Computer Languages, Systems and Structures, 30(3-4):231–258, 2004.

5. A. Di Pierro, C. Hankin, and H.Wiklicky. Approximate Non-Interference. In Proc.
of the IEEE Computer Security Foundations Workshop (CSFW’02), pages 3–17.
IEEE Computer Society Press, 2002.

100 A. Bossi, C. Piazza, and S. Rossi

6. R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Infor-
mation Flow). In R. Focardi and R. Gorrieri, editors, Proc. of Foundations of
Security Analysis and Design (FOSAD’01), volume 2171 of LNCS, pages 331–396.
Springer-Verlag, 2001.

7. R. Giacobazzi and I. Mastroeni. Abstract Non-Interference: Parameterizing Non-
Interference by Abstract Interpretation. In Proc. of ACM Symposium on Principles
of Programming Languages (POPL’04), pages 186–197. ACM Press, 2004.

8. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proc.
of the IEEE Symposium on Security and Privacy (SSP’82), pages 11–20. IEEE
Computer Society Press, 1982.

9. J. A. Goguen and J. Meseguer. Unwinding and Inference Control. In Proc. of the
IEEE Symposium on Security and Privacy (SSP’84), pages 75–86. IEEE Computer
Society Press, 1984.

10. R. Joshi and K. R. M. Leino. A Semantic Approach to Secure Information Flow.
Science of Computer Programming, 37(1–3):113–138, 2000.

11. H. Mantel. Unwinding Possibilistic Security Properties. In Proc. of the Euro-
pean Symposium on Research in Computer Security (ESoRiCS’00), volume 2895
of LNCS, pages 238–254. Springer-Verlag, 2000.

12. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
13. P. Y. A. Ryan. A CSP Formulation of Non-Interference and Unwinding. Cipher,

pages 19–27, 1991.
14. P.Y.A. Ryan and S. Schneider. Process Algebra and Non-Interference. Journal of

Computer Security, 9(1/2):75–103, 2001.
15. A. Sabelfeld and H. Mantel. Static Confidentiality Enforcement for Distributed

Programs. In M. V. Hermenegildo and G. Puebla, editors, Proc. of Int. Static
Analysis Symposium (SAS’02), volume 2477 of LNCS, pages 376–394. Springer-
Verlag, 2002.

16. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communication, 21(1):5–19, 2003.

17. A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Sequential
Programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

18. G. Smith and D. M. Volpano. Secure Information Flow in a Multi-threaded Imper-
ative Language. In Proc. of ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’98), pages 355–364. ACM Press, 1998.

19. D. M. Volpano and G. Smith. A Type-Based Approach to Program Security. In
TAPSOFT, pages 607–621, 1997.

20. G. Winskel. The formal semantics of programming languages. The MIT Press,
1993.

21. S. Zdancewic and A. C. Myers. Robust Declassification. In Proc. of the IEEE Com-
puter Security Foundations Workshop (CSFW’01), pages 15–23. IEEE Computer
Society Press, 2001.

Natural Rewriting for
General Term Rewriting Systems

Santiago Escobar1, José Meseguer2, and Prasanna Thati3

1 Universidad Politécnica de Valencia, Spain
sescobar@dsic.upv.es

2 University of Illinois at Urbana-Champaign, USA
meseguer@cs.uiuc.edu

3 Carnegie Mellon University, USA
thati@cs.cmu.edu

Abstract. We address the problem of an efficient rewriting strategy for
general term rewriting systems. Several strategies have been proposed
over the last two decades for rewriting, the most efficient of all being the
natural rewriting strategy [9]. All the strategies so far, including natural
rewriting, assume that the given term rewriting system is a left-linear
constructor system. Although these restrictions are reasonable for some
functional programming languages, they limit the expressive power of
equational languages, and they preclude certain applications of rewrit-
ing to equational theorem proving and to languages combining equa-
tional and logic programming. In this paper, we propose a conservative
generalization of natural rewriting that does not require the rules to be
left-linear and constructor-based. We also establish the soundness and
completeness of this generalization.

1 Introduction

A challenging problem in modern programming languages is the discovery of
sound and complete evaluation strategies which are: (i) optimal w.r.t. some effi-
ciency criterion (typically the number of rewrite steps), (ii) easily implementable,
and (iii) applicable for a large class of programs. In this paper, we focus on (iii).

The evaluation strategies for programming languages so far can be classified
into two classical families: eager strategies (also known as innermost or call-
by-value) and lazy strategies (also known as outermost or call-by-need). The
choice of the strategy can have a big impact on performance and semantics of
programming languages: for instance, lazy rewriting typically needs more re-
sources than eager rewriting [22], but the former improves termination of the
program w.r.t. the latter. To define a lazy rewriting strategy, we have to define
what a needed computation is and also have to provide an efficient procedure
to determine whether some computation is needed. These two problems were
first addressed for rewriting in a seminal paper by Huet and Levy [18], where
the strongly needed reduction strategy was proposed. Several refinements of this

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 101–116, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

102 S. Escobar, J. Meseguer, and P. Thati

strategy have been proposed over the last two decades, the most significant ones
being Sekar and Ramakrishnan’s parallel needed reduction [24], and Antoy, Echa-
hed and Hanus’ (weakly) outermost-needed rewriting [1, 3, 4]. Recently, (weakly)
outermost-needed rewriting has been improved by Escobar by means of the nat-
ural rewriting strategy [9, 10]. Natural rewriting is based on a suitable extension
of the demandedness notion associated to (weakly) outermost-needed rewriting.
Moreover, the strategy enjoys good computational properties such as soundness
and completeness w.r.t. head-normal forms, and it preserves optimality w.r.t.
the number of reduction steps for sequential parts of the program.

A typical assumption of previous strategies [14, 19, 16, 24, 1, 3, 4, 2, 9, 10] is
that the rewrite rules are left-linear and constructor. These restrictions are rea-
sonable for some functional programming languages, but they limit the expres-
sive power of equational languages such as OBJ [15], CafeOBJ [13], ASF+SDF
[8], and Maude [7], where non-linear left-hand sides are perfectly acceptable.
This extra generality is also necessary for applications of rewriting to equational
theorem proving, and to languages combining equational and logic program-
ming, since in both cases assuming left-linearity is too restrictive. Furthermore,
for rewrite systems whose semantics is not equational but is instead rewriting
logic based, such as rewrite rules in ELAN [6], or Maude system modules, the
constructor assumption is unreasonable and almost never holds.

In summary, generalizing the natural rewriting strategy to general rewriting
systems, without left-linearity and constructor conditions, will extend the scope
of applicability of the strategy to more expressive equational languages and
to rewriting logic based languages, and will open up a much wider range of
applications. In the following, we give the reader a first intuitive example of how
that generalization will work.

Example 1. Consider the following TRS for proving equality (≈) of arithmetic
expressions built using division (÷), modulus or remainder (%), and subtraction
(−) operations on natural numbers.
(1) 0 ÷ s(N) → 0 (5) M − 0 → M
(2) s(M) ÷ s(N) → s((M−N) ÷ s(N)) (6) s(M) − s(N) → M−N
(3) M % s(N) → (M−s(N)) % s(N) (7) X ≈ X → True
(4) (0 − s(M)) % s(N) → N − M

Note that this TRS is not left-linear because of rule (7) and it is not construc-
tor because of rule (4). Therefore, it is outside the scope of all the strategies
mentioned above. Furthermore, note that the TRS is neither terminating nor
confluent due to rule (3).

Consider the term1 t1 = 10! ÷ 0. If we only had rules (1), (2), (5) and (6),
the natural rewriting strategy [9] would be applicable and no reductions on t1
would be performed, since t1 is a head-normal form. In contrast, the other strate-

1 The subterm 10! represents factorial of s10(0) but we do not include the rules for
! because we are only interested in the fact that it has a remarkable computational
cost, and therefore we would like to avoid its reduction in the examples whenever
possible.

Natural Rewriting for General Term Rewriting Systems 103

gies mentioned above, for example, outermost-needed rewriting, would force2 the
evaluation of the computationally expensive subterm 10!. Hence, we would like
to generalize natural rewriting to a version that enjoys this optimality (w.r.t.
the number of rewrite steps) and that can also handle non-left-linear and non-
constructor rules such as (7) and (4).

Consider the term t2 = 10! % (s(0)−s(0)) ≈ 10! % 0. We would like
the generalization of the natural rewriting strategy to perform only the optimal
computation:
10! % (s(0)−s(0)) ≈ 10! % 0
→ 10! % (0−0) ≈ 10! % 0 → 10! % 0 ≈ 10! % 0 → True

that avoids unnecessary reduction of the subterm 10! % 0 at the final rewrite
step, and also avoids reductions on the computationally expensive term 10!
during the whole rewrite sequence.

Since natural rewriting [9] uses a more refined demandedness notion for re-
dexes in comparison with other strategies such as outermost needed rewriting
[1, 4], it leads to a very efficient lazy evaluation strategy. In this paper, we pro-
pose a conservative generalization of this demandedness notion that drops the
assumptions that the rewrite rules are left-linear and constructor, while retaining
soundness and completeness w.r.t. head-normal forms.

It is worthy to mention that an exception in the previous strategies about
the left-linearity requirement is [2]. In [2], a non-left-linear rule “l → r” is
transformed into a left-linear conditional rule “l′ → r if . . . , X ↓ X1, . . . , X ↓
Xn, . . .” by renaming, in the linear term l′, extra occurrences of a variable X to
X1, . . . , Xn. However, t ↓ s succeeds only if there exists a constructor term w
such that t→∗ w and s→∗ w and this is an unreasonable condition for the kind
of rewrite systems with a non-equational semantics, like rewriting logic, consid-
ered in this paper. Anyway, the strategy of [2] is not applicable to Example 1,
since imposes the constructor condition.

The reader might wonder if a suitable program transformation that converts
a term rewriting system into a left-linear constructor system whose semantics is
equivalent to the original is possible. However, existing techniques for lineariza-
tion of term rewriting systems, such as [17], or for transformation of a term
rewriting system into a constructor system, such as [23], are not applicable in

2 Note that this behavior is independent of the fact that two possible definitional
trees, a data structure guiding the outermost-needed rewriting strategy [1], exist
for symbol ÷; see [9–Example 21]. The idea is that for any of the two definitional
trees available, there will exist terms for which the previous problem still persists.
Note that this problem becomes unavoidable, since a definitional tree is fixed for a
program, not for a source term. Specifically, if we consider that the set of constructor
symbols is {0, s, pred} (instead of simply {0, s}), then the subterm 10! in the term
s1 = 10! ÷ pred(0) is uselessly reduced for one of the definitional trees, whereas
subterm 10! in the term s2 = pred(0) ÷ 10! is uselessly reduced for the other
definitional tree. However, both terms are detected as head-normal forms by natural
rewriting [9], like the previous term 10! ÷ 0.

104 S. Escobar, J. Meseguer, and P. Thati

general to term rewriting systems; for instance, these two techniques do not ap-
ply to Example 1, since they require the TRS to be terminating, confluent and
forward-branching (see [23] for further details).

After some preliminaries in Section 2, we present our generalization of natu-
ral rewriting strategy in Section 3, and formally define its properties. We show
soundness and completeness of the generalized rewrite strategy w.r.t. head-
normal forms. In Section 4, we further refine the strategy to obtain a more
optimal one, without losing the soundness and completeness properties. Finally,
we conclude in Section 5. Missing proofs can be found in [11].

2 Preliminaries

We assume a finite alphabet (function symbols) F = {f, g, . . .}, and a countable
set of variables X = {X, Y, . . .}. We denote the set of terms built from F and X by
T (F ,X) and write T (F) for ground terms built only from F . We write Var(t) for
the set of variables occurring in t. A term is said to be linear if it has no multiple
occurrences of a single variable. We use finite sequences of integers to denote a
position in a term. Given a set S ⊆ F ∪X , PosS(t) denotes positions in t where
symbols or variables in S occur. We write Posf (t) and Pos(t) as a shorthand
for Pos{f}(t) and PosF∪X (t), respectively. We denote the root position by Λ.
Given positions p, q, we denote its concatenation as p.q and define p/q = p′ if
p = q.p′. Positions are ordered by the standard prefix ordering ≤. We say p and
q are disjoint positions and write p ‖ q, if p ≤ q and q ≤ p. For sets of positions
P,Q we define P.Q = {p.q | p ∈ P ∧ q ∈ Q}. We write P.q as a shorthand for
P.{q} and similarly for p.Q. The subterm of t at position p is denoted as t|p,
and t[s]p is the term t with the subterm at position p replaced by s. We define
t|P = {t|p | p ∈ P}. The symbol labeling the root of t is denoted as root(t).
Given a set of positions P , we call p ∈ P an outermost position in P if there is
no q ∈ P such that q < p.

A substitution is a function σ : X → T (F ,X) which maps variables to
terms, and which is different from the identity only for a finite subset Dom(σ)
of X . We denote the homomorphic extension of σ to T (F ,X) also by σ, and its
application to a term t by σ(t). The set of variables introduced by σ is Ran(σ) =
∪x∈Dom(σ)Var(σ(x)). We denote by id the identity substitution: id(x) = x for all
x ∈ X . Terms are ordered by the preorder ≤ of “relative generality”, i.e., s ≤ t
if there exists σ s.t. σ(s) = t. We write σ−1(x) = {y ∈ Dom(σ) | σ(y) = x}.

A rewrite rule is an ordered pair (l, r) of terms, also written l → r, with
l ∈ X . The left-hand side (lhs) of the rule is l, and r is the right-hand side (rhs).
A TRS is a pair R = (F , R) where R is a set of rewrite rules. L(R) denotes
the set of lhs’s of R. A TRS R is left-linear if for all l ∈ L(R), l is a linear
term. Given R = (F , R), we assume that F is defined as the disjoint union
F = C & D of symbols c ∈ C, called constructors, and symbols f ∈ D, called
defined symbols, where D = {root(l) | l → r ∈ R} and C = F − D. A pattern
is a term f(l1, . . . , lk) where f ∈ D and li ∈ T (C,X), for 1 ≤ i ≤ k. A TRS
R = (C & D, R) is a constructor system (CS) if every l ∈ L(R) is a pattern.

Natural Rewriting for General Term Rewriting Systems 105

A term t rewrites to s at position p ∈ Pos(t) using the rule l → r ∈ R, called
a rewrite step and written t →〈p,l→r〉 s (t

p−→ s or simply t → s), if t|p = σ(l)
and s = t[σ(r)]p. The pair 〈p, l → r〉 is called a redex and we also refer to the
subterm t|p in a rewrite step from t at position p as a redex. We often underline
the redex in a rewrite step for readability. We denote the reflexive and transitive
closure of the rewrite relation → by →∗. We call t the source and s the target of
a rewrite sequence t →∗ s. A term t is a →-normal form (or normal form) if it
contains no redex, i.e., there is no s such that t→ s. A term t is a→-head-normal
form (or head-normal form) if it cannot be reduced to a redex, i.e., there are
no s, s′ such that t→∗ s

Λ−→ s′. We denote by >Λ−→ a rewrite step at a position
p > Λ.

A (sequential) rewrite strategy S for a TRS R is a subrelation S→⊆→ [21]. A
rewrite strategy is head normalizing [21] if it provides a head-normal form for
every source term, if such head-normal form exists. In this paper, we are only
interested in head-normalizing rewrite strategies, since they are the basis for lazy
rewriting strategies, and the following correctness and completeness criteria:

1. (Correctness) If a term t is a S→R-normal form, then t is a head-normal form.

2. (Completeness) If t →∗ s, then ∃s′ s.t. t
S→∗ s′, root(s′) = root(s) and

s′ >Λ−→∗ s.

3 Generalizing Natural Rewriting

As mentioned earlier, we are interested in a lazy strategy that, to the extent
possible, performs only those reductions that are essential for reaching head-
normal forms. Now, if a term t is not a head-normal form; then we know that
after a (possibly empty) sequence of rewrites at positions other than the root,
a rule l → r can be applied at the root. Accordingly, we adopt the approach
of computing a demanded set of redexes in t such that at least one of the re-
dexes in the demanded set has to be reduced before any rule can be applied at
the root position in t. This idea of demandedness for reductions at the root is
common in lazy evaluation strategies for programming languages, such as outer-
most needed rewriting [4]; see [5] for a survey on demandedness in programming
languages.

Definition 1. For a term s and a set of terms T = {t1, . . . , tn} we say that s
is a context of the terms in T if s ≤ ti for all 1 ≤ i ≤ n. There is always a
least general context s of T , i.e., one such that for any other context s′ we have
s′ ≤ s; furthermore s is unique up to renaming of variables. For 1 ≤ i ≤ n, let the
substitution σi be such that σi(s) = ti and Dom(σi) ⊆ Var(s). We define the set
Pos�=(T) of disagreeing positions between the terms in T as those p ∈ PosX (s)
such that there is an i with σi(s|p) = s|p.

106 S. Escobar, J. Meseguer, and P. Thati

Example 2. Consider the set of terms T = {10! % (s(0)−s(0)), 10! % 0}
borrowed from Example 1. The least general context of T is the term s =
10! % Z and the set of disagreeing positions between terms in T is
Pos�=(T) = {2}.

Definition 2 (Demanded positions). For terms l and t, let s be the least
general context of l and t, and let σ be the substitution such that σ(s) = l. We
define the set of demanded positions in t w.r.t. l as

DPl(t) =
⋃

x∈Var(s)

if σ(x) /∈ X then Posx(s) else Q.Pos�=(t|Q)
where Q = Posσ−1(σ(x))(s)

Let us unpack the definition above. Intuitively, the set DPl(t) returns a set
of positions in t at which t necessarily has to be “changed” before applying the
rule l → r at the root position, i.e., for l to be able to match the term under
consideration. Suppose, s is the least general context of l and t, and σ is such
that σ(s) = l. Note that for every non-variable position p in s, it is the case that t
and l have the same symbol at p. Now, if σ maps a variable x ∈ Var(s) to a non-
variable term, then t and l disagree (have a different symbol) at every position
p ∈ Posx(s); this is a consequence of the fact that s is the least general context
of l and t. The other case is where a variable x ∈ Var(s) is mapped to a possibly
non-linear variable of l. In this case, consider the positions of all the variables in
s that are mapped to the same variable as x, namely Q = Posσ−1(σ(x))(s). Now,
l matches t only if all the subterms of t at positions in Q are identical. Thus, we
compute the disagreeing positions Pos�=(t|Q), and add Q.Pos�=(t|Q) to the set
DPl(t). Finally, note that when l ≤ t, it is the case that l is the least general
context of l and t, and DPl(t) = ∅.

Example 3. Consider the left-hand side l7 = X ≈ X and the term
t2 = 10! % (s(0)−s(0)) ≈ 10! % 0 of Example 1. The least general context
of l7 and t2 is s = W ≈ Y. Now, for σ = {W �→ X, Y �→ X}, we have σ(s) = l7.
While computing DPl7(t2), we obtain the set of disagreeing positions between
the subterms in t2 corresponding to the non-linear variable X in l7, i.e., the set
Pos�=(10! % (s(0)−s(0)), 10! % 0) = {2}. Thus, DPl7(t2) = {1, 2}.{2} =
{1.2, 2.2}.

Note that the symbol at a position p ∈ DPl(t) in t can be changed by not
only a rewrite at p, but also by a rewrite at a position q < p. Thus, besides
considering the positions in DPl(t) as candidates for rewrites, we also need to
consider the positions q in t that are above some position in DPl(t). Thus, for
a position q in a term t, we define D↑

t (q) = {p | p ≤ q ∧ p ∈ PosD(t)}. We lift
this to sets of positions as D↑

t (Q) = ∪q∈QD↑
t (q).

Example 4. Consider the TRS in Example 1, the left-hand side l7 = X ≈ X,
and the new term t = 0 ÷ s(10!) ≈ 0 ÷ s(s(10!)). We have DPl7(t) =
{1.2.1, 2.2.1}, and the subterms at positions 1.2.1 and 2.2.1 should be identical

Natural Rewriting for General Term Rewriting Systems 107

for the above rule to be applied at the root position. Now, reductions in only the
subterm 10! at position 1.2.1 would never result in s(10!), which is the subterm
at position 2.2.1, and vice versa. The right reduction sequence leading to constant
True is the one reducing the symbols ÷ above the demanded positions 1.2.1 and
2.2.1:
0 ÷ s(10!) ≈ 0 ÷ s(s(10!))

→ 0 ≈ 0 ÷ s(s(10!)) → 0 ≈ 0 → True

We are now ready to compute the demanded set of redexes of a given term t.

Definition 3 (Demanded redexes). We define the sufficient set of positions
of a term t as

SP(t) =
⋃

l∈L(R)∧l≤t D
↑
l (PosX (l)) ∪ D↑

t (FP(t))

where FP(t) =
⋃

l∈L(R) DPl(t). Then, we define the demanded set of redexes of
a term t as

DR(t) = {〈Λ, l→r〉 | l ∈ L(R) ∧ l ≤ t} ∪
⋃

q∈SP(t)\{Λ} q.DR(t|q)

where for a set of redexes S, we define q.S = {〈q.p, l→r〉 | 〈p, l→r〉 ∈ S}.
The set DR(t) is recursively computed as follows. Whenever l ≤ t for a rule

l → r, the redex 〈Λ, l → r〉 is included in DR(t). When l ≤ t, we recursively
compute DR(t|q) for each position q ∈ D↑

t (DPl(t)). The case l ≤ t has an
additional subtlety; specifically, in this case, we also have to recursively compute
DR(t|q) for the positions q in t that have a defined symbol and that are above
a variable position in l. This is necessary for the strategy to be complete, as
illustrated by the following example.

Example 5. Consider the TRS
(i) first(pair(X,Y)) → X (ii) pair(X,Y) → pair(Y,X)

and the term t = first(pair(a,b)). If we simply define SP(t) = D↑
t (FP(t)),

then DR(t) = {〈Λ, (i)〉}, and the only rewrite sequence starting from t and
beginning with a redex in DR(t) would be
first(pair(a,b)) → a

But the term t can also be reduced to the head-normal form b as follows
first(pair(a,b)) → first(pair(b,a)) → b (*)

Hence, although the left-hand side of rule (i) matches t, for the strategy to
be complete, we also have to consider the subterm pair(a,b) of t at posi-
tion 1 (which is above variable positions 1.1 and 1.2 in the left-hand side of
rule (i)), and recursively compute DR(pair(a,b)). Then we will have DR(t) =
{〈Λ, (i)〉, 〈1, (ii)〉}, which enables us to account for the rewrite sequence (∗)
above.

From now on, while displaying the sets DR(t) in examples, we will omit the
rule l → r in a redex 〈p, l → r〉 and simply write 〈p〉, whenever there is no scope
for ambiguity about the rule.

108 S. Escobar, J. Meseguer, and P. Thati

Example 6. Consider again the term t2 = 10! % (s(0)−s(0)) ≈ 10! % 0
from Example 1, and the computation of DR(t2). Since t2 is not a redex, we
have that

DR(t2) = ∪q∈SP(t2)\{Λ}q.DR(t2|q).

But, since t2 isnot a redex,wehaveSP(t2) = D↑
t2(FP(t2)) = D↑

t2(∪l∈L(R)DPl(t2)).
Now, from Example 3, we have that DPl7(t2) = {1.2, 2.2} for the rule l7 = X ≈ X

and DPl(t2) = {Λ} for any other rule l in R. So then, D↑
t2(∪l∈L(R)DPl(t2)) =

{Λ, 1, 2, 1.2}, where the position 2.2 has been removed since it is not rooted by a
defined symbol. Hence, we have

DR(t2) = 1.DR(t2|1) ∪ 2.DR(t2|2) ∪ 1.2.DR(t2|1.2).

Now, we consider DR(t2|1.2). Subterm s(0)−s(0) at position 1.2 is a redex
and thus 〈Λ〉 ∈ DR(t2|1.2). Furthermore, SP(t2|1.2) \ {Λ} = ∅, because all sym-
bols under root position in s(0)−s(0) are constructor symbols. Thus, we have
DR(t2|1.2) = { 〈Λ〉 }.

Next, we consider DR(t2|1). The subterm 10! % (s(0)−s(0)) is not a re-
dex, and thus

DR(t2|1) = ∪q∈SP(t2|1)\{Λ}q.DR(t2|1.q).

Now consider SP(t2|1). Since 10! % (s(0)−s(0)) is not a redex, we have
SP(t2|1) = D↑

t2|1(FP(t2|1)) = D↑
t2|1(∪l∈L(R)DPl(t2|1)). Consider DPl3(t2|1) and

DPl4(t2|1) for left-hand sides l3 = M % s(N) and l4 = (0 − s(M)) % s(N);
note that DPl(t2|1) = {Λ} for any other rule l in R. Then, we have DPl3(t2|1) =
{2} and DPl4(t2|1) = {1, 2} and therefore we have

DR(t2|1) = 1.DR(t2|1.1) ∪ 2.DR(t2|1.2).

Now, this implies that we have to compute recursively DR(t2|1.1) and DR(t2|1.2).
Now, DR(t2|1.2) was already computed before, and the reader can check that
DR(t2|1.1) = {〈Λ〉}. So, we can conclude DR(t2|1) = { 〈1〉, 〈2〉 }.

Finally, consider DR(t2|2). The subterm 10! % 0 is not a redex, thus

DR(t2|2) = ∪q∈SP(t2|2)\{Λ}q.DR(t2|2.q).

But using a similar reasoning that in the previous term t2|1, we can conclude
DR(t2|2) = { 〈1〉 }. Finally, we have that DR(t2) = {〈1.1〉, 〈1.2〉, 〈2.1〉}.

We are now ready to formally define the natural rewriting strategy.

Definition 4 (Natural rewriting). We say that term t reduces by natural
rewriting to term s, denoted by t

m→〈p,l→r〉 s (or simply t
m→ s) if t →〈p,l→r〉 s

and 〈p, l → r〉 ∈ DR(t).

Example 7. Continuing Example 6, we have three possible natural rewriting
steps from the term t2: (i) a rewriting step reducing the subterm s(0)−s(0)
at position 1.2, (ii) a rewriting step reducing the subterm 10! at position 1.1,

Natural Rewriting for General Term Rewriting Systems 109

and (iii) a rewriting step reducing the subterm 10! at position 2.1. The last
two rewriting steps are undesirable and unnecessary for obtaining the normal
form True, as shown in Example 1. Using the further refinements to the natural
rewriting strategy presented in the next section, we will be able to avoid reducing
these unnecessary redexes.

It is worthy to note that although some refinements are still necessary to
obtain the efficient rewrite strategy we desire, we are already able to avoid some
unnecessary rewrite steps while computing head-normal forms, as shown in the
following example.

Example 8. Consider Example 1 and the term t = 0 ÷ s(10!). The term is
a redex, so we have DR(t) = { 〈Λ〉 } ∪ ∪q∈SP(t)\{Λ}q.DR(t|q). Now we have
SP(t) = {Λ} ∪ D↑

t (∪l∈L(R)DPl(t)). Now, DPl1(t) = ∅ for l1 = 0 ÷ s(M),
DPl2(t) = {1} for l2 = s(M) ÷ s(N), and DPl(t) = {Λ} for any other rule l
in R. Then, SP(t) = {Λ}, since position 1 corresponds to a constructor, and
therefore DR(t) = { 〈Λ〉 }. So, our natural rewriting strategy performs only the
sequence: 0 ÷ s(10!) → 0, and avoids any reduction on the computational
expensive term 10!.

In the remaining part of this section, we show that the natural rewriting
strategy defined above satisfies the correctness and completeness criteria w.r.t.
head-normal forms, that are described in Section 2.

The following is a property of DR(t) that is easy to check, and that will be
useful.

Remark 1. If 〈q, l→r〉 ∈ DR(t) and p < q.q′ for q′ ∈ PosX (l), then p.DR(t|p) ⊆
DR(t).

In order to prove completeness of the generalized natural rewriting strategy,
we introduce some auxiliary notation. Given two rewrite sequences π = t →∗ s
and π′ = s→∗ w, we write π;π′ for the sequence t→∗ s→∗ w. Given a rewrite
sequence π = t0

p1−→ t1;π′ with π′ = t1
p2−→ t2 · · ·

pn−→ tn and given an outermost
position pk amongst p1, . . . , pn, we define the projection π|pk

as follows:

π|pk
=

⎧⎪⎨
⎪⎩

π if n = 0
π′|pk

if p1 ‖ pk

t0|pk

p1/pk−→ t1|pk
;π′|pk

otherwise

We now establish a key property of the set DR(t) that will be useful in
proving the correctness and completeness results.

Lemma 1. Consider a rewrite sequence t→〈p1,l1→r1〉 t1 · · · →〈pn,ln→rn〉 tn such
that pn = Λ. Then, there is a k s.t. 1 ≤ k ≤ n and 〈pk, lk→rk〉 ∈ DR(t).

Now, we prove correctness of our generalized rewrite strategy w.r.t. head-normal
forms.

110 S. Escobar, J. Meseguer, and P. Thati

Theorem 1 (Correctness). If a term t is a m→ -normal form, then t is a
head-normal form.

Proof. We prove the contrapositive. Specifically, if t is not a head-normal form,
then, by Lemma 1, we have t

m→〈p,l→r〉 s for some s and t is not a m→ -normal
form. �

In the following, we give some useful definitions and results that will be useful
in proving completeness.

Lemma 2. Consider a rewrite sequence t→〈p1,l1→r1〉 t1 · · · →〈pn,ln→rn〉 tn such
that 〈pi, li→ri〉 ∈ DR(t) for all i s.t. 1 ≤ i ≤ n. Then, there is no i and 〈q, l→r〉 ∈
DR(t) such that pi < q.q′ for q′ ∈ PosX (l).

To prove completeness, we will show that whenever there is a rewrite sequence
π = t→∗ t′, then there is also a rewrite sequence t→〈q,l→r〉 s→∗ t′ that begins
with a redex 〈q, l → r〉 ∈ DR(t). Furthermore, the rewrite sequence π′ = s→∗ t′

is “smaller” in an appropriate sense in comparison to π. Specifically, we will
define a well-founded metric on rewrite sequences, and show that the metric of
π′ is strictly smaller than that of π. The completeness result will then follow by
noetherian induction on this metric.

Definition 5. Given a rewrite sequence π = t0
p1−→ t1 · · ·

pn−→ tn, we define a
metric μ(π) returning a sequence of natural numbers as follows.

– Let k be the smallest integer such that pk = Λ, if any. Then,

μ(π) = μ(π1).1.μ(π2)

where π1 = t0 →∗ tk−1 and π2 = tk →∗ tn.
– If pi = Λ for all i, then let q1, . . . , qk be the outermost positions in p1, . . . , pn.

We define

μ(π) =
k∑

i=1

μ(π|qi
)

where + is inductively defined as: n1.v1+n2.v2 = (n1+n2).(v1+v2), ε+v = v,
and v + ε = v.

We define the ordering < on metrics as follows v1 < v2 if (i) |v1| < |v2|, or (ii)
|v1| = |v2|, v1 = v′1.n1.v, v2 = v′2.n2.v, and n1 < n2; where | · | denotes the length
of a sequence of natural numbers. Note that < is a well-ordering.

The metric μ(π) essentially represents the parallelism that is implicit in the
rewrite sequence π. Specifically, consider the rewrite sequence in Definition 5.
If pk = Λ, then the first k − 1 rewrites in π have to be performed before the
kth rewrite, and similarly the kth rewrite has to be performed before any of
the remaining n − k rewrites. On the other hand, if pi and pj are two different
outermost positions in p1, . . . , pn then all the rewrites in π|pi

and π|pj
can be

performed in parallel. Thus, |μ(π)| is the number of sequential steps that would

Natural Rewriting for General Term Rewriting Systems 111

remain when π is parallelized to the extent possible, and further, if the ith num-
ber in the sequence μ(π) is ni then the ith step in the parallelized version of π
would contain ni parallel reductions.

Example 9. Consider the TRS of Example 1 and the following sequence π:
s((0−0) − 0) − s(0−0)

→ s(0−0) − s(0−0) → s(0) − s(0−0) → s(0)−s(0) → 0−0 → 0

The metric for this sequence is μ(π) = μ(π′).1.μ(π′′), where π′ is the sequence
containing the first three steps of π and π′′ is the sequence containing the last
step of π. Further, μ(π′′) = 1, since there is only one step at root position.
Now, the outermost positions of π′ are namely 1.1 and 2.1, and hence we have
μ(π′) = μ(π′|1.1) + μ(π′|2.1). Further, π′|1.1 = (0−0)−0 → 0−0 → 0, and
π′|2.1 = 0−0 → 0. Now, μ(π′|2.1) = 1, and the reader can check that μ(π′|1.1) =
1.1. So finally, μ(π) = μ(π′).1.μ(π′′) = μ(π′).1.1 = (μ(π′|1.1) + μ(π′|2.1)).1.1 =
(1.1 + 1).1.1 = 2.1.1.1, that indicates that there are two steps at the beginning
that can be performed in parallel, followed by three other steps that cannot be
performed in parallel.

The following are some useful properties of the metric.

Lemma 3. |μ(π1 ; π2)| ≤ |μ(π1)|+ |μ(π2)|.

Lemma 4. Let π = t1 →∗ t2
q−→ t3 →∗ t4 and ρ = t′1 →∗ t3 →∗ t4 be rewrite

sequences such that |μ(t′1 →∗ t3)| ≤ |μ(t1 →∗ t2)|, and all the reductions in both
t1 →∗ t2 and t′1 →∗ t3 happen under the position q. Then μ(ρ) < μ(π).

Lemma 5. Let π = t1 →∗ t2 →〈q,l→r〉 t3 →∗ t4 where 〈q, l → r〉 ∈ DR(t1) and
none of the redexes in t1 →∗ t2 is in DR(t1). Then, there is a rewrite sequence
t1 →〈q,l→r〉 s→∗ t4 such that μ(s→∗ t4) < μ(π).

Theorem 2 (Completeness). If t→∗ s, then there is an s′ such that t m→∗ s′,
root(s′) = root(s) and s′ >Λ−→∗ s.

Proof. Let π = t →〈p1,l1→r1〉 t1 · · · →〈pn,ln→rn〉 s. We prove the theorem by
noetherian induction on μ(π). The base case μ(π) = ε is obvious, since |π| = 0.
For the induction step there are two cases:

– Suppose there is no i such that 1 ≤ i ≤ n and 〈pi, li→ri〉 ∈ DR(t). Then, by
Lemma 1, pi > Λ for all i, and thus the statement holds by taking s′ = t.

– Now, we consider the least k such that 〈pk, lk→rk〉 ∈ DR(t). Then, by
Lemma 5, we have π′ = t →〈pk,lk→rk〉 t′1 ; δ for some t′1 and a rewrite
sequence δ with target s. Furthermore, μ(δ) < μ(π). By induction hypothe-
sis, we have t′1

m→∗ s′ for some s′ such that root(s′) = root(s) and s′ >Λ−→∗ s.
Then, the statement follows from the observation that t

m→∗ s′. �

112 S. Escobar, J. Meseguer, and P. Thati

4 Refinements of the Strategy

In this section, we further refine the natural rewriting strategy, using the notions
of failing terms and most frequently demanded positions, both of which were
originally introduced in [9], although not in an explicit way and for left-linear
constructor systems.

4.1 Failing Terms

For a position p and a term t, we define the set Rt(p) of reflections of p w.r.t.
t as follows: if p is under a variable position in t, i.e., p = q.q′ for some q such
that t|q = x, then Rt(p) = Posx(t).q′, else Rt(p) = {p}. We say that the path to
p in t is stable (or simply p is stable) if D↑

t (p) \ {Λ} = ∅.

Definition 6 (Failing term). Given terms l, t, we say t fails w.r.t. l, denoted
by l � t, if there is p ∈ DPl(t) such that p is stable, and one of the following
holds: (i) Rl(p)∩DPl(t) = {p}; or (ii) there is q ∈ Rl(p)∩DPl(t) with root(t|p) =
root(t|q), and q is also stable. We denote by l � t that t is not failing w.r.t. l.

The idea behind the definition above is that if l � t, then no sequence of
reductions in t will help produce a term to which the rule l → r can be applied at
the root. We can thus safely ignore the positions demanded by l while computing
the set DR(t).

Example 10. Consider the terms t = 10! % 0 and l3 = M % s(N) from Exam-
ple 1. We have that l3 � t, because position 2 ∈ DPl3(t) is stable and Rl3(2) =
{2}. Now, consider the terms t′ = s(Z) ≈ 0 and l7 = X ≈ X, again from Ex-
ample 1. We have l7 � t′, since position 1 ∈ DPl7(t

′) is stable, Rl7(1) = {1, 2},
root(t′|1) = s = 0 = root(t′|2), and position 2 is also stable.

Definition 7 (Demanded redexes). We improve the set DR(t) in Definition
3 and replace the former set FP(t) by FP(t) =

⋃
l∈L(R)∧l ��t DPl(t).

With trivial modifications to the proofs, the correctness and completeness
properties of natural rewriting hold with this refined Definition 7 instead of
Definition 3.

Example 11. Consider again the term t2 = 10! % (s(0)−s(0)) ≈ 10! % 0
from Example 7. With the refined Definition 7 we have DR(t2) = {〈1.1〉, 〈1.2〉}
and the redex at position 2.1 is not considered anymore. The reason is that from
Example 10, it follows that the subterm 10! % 0 is failing w.r.t. rules l3 and l4,
and hence SP(t2|2) \ {Λ} = ∅. Therefore, we have only two possible rewriting
steps from the term t2: (i) a rewriting step reducing the subterm s(0)−s(0) at
position 1.2, and (ii) a rewriting step reducing the subterm 10! at position 1.1.
The second rewrite step is still undesirable and its removal motivates the next
refinement.

Natural Rewriting for General Term Rewriting Systems 113

4.2 Most Frequently Demanded Positions

Suppose l ≤ t, l � t, and that we have a rewrite sequence t
p1−→ . . . tn−1 →〈pn,l→r〉

tn where pn = Λ. Then, observe that for every q ∈ DPl(t), there is a reduction
above a position in Rl(q), i.e., there is q′ ∈ Rl(q) and k such that pk ∈ D↑

t (q′);
clearly, only then it is possible that l ≤ tn−1. Now, recall that we are only inter-
ested in computing a demanded set of redexes in t such that before any rule can
be applied at the root position in t, at least one of the redexes in the demanded
set has to be reduced. Therefore, while computing the set SP(t) in Definition 7,
for each l ∈ L(R) such that l � t, instead of considering (the defined symbols
above) every position in DPl(t), it is sufficient to consider only the positions
Rl(q) for at least one q ∈ DPl(t). This motivates the following refinement of
Definition 7.

Definition 8 (Set cover). For a set of positions P , a sequence of lhs’s l1, . . . , ln,
and a sequence of sets of positions Q1, . . . , Qn, we say that P covers l1, . . . , ln
and Q1, . . . , Qn if for all 1 ≤ i ≤ n, there is a position p ∈ P ∩ Qi such that
Rli(p) ⊆ P .

Definition 9 (Demanded redexes). We improve the set DR(t) in Defini-
tion 7 and replace the former set FP(t) by the set FP(t) returning one of the
minimal sets of positions that cover l1, . . . , ln and DPl1(t), . . . ,DPln(t), where
{l1, . . . , ln} = {l ∈ L(R) | l �t}.

The set FP(t) above is a minimal set cover that is closed under reflection.
Roughly, minimality amounts to giving priority to those positions in t that are
demanded by the maximum number of rules, i.e., what we call the most fre-
quently demanded positions. This idea of giving priority to ’popular’ demanded
positions is familiar from other lazy evaluation strategies such as outermost
needed rewriting [4], and was first formalized in a similar fashion as above in
[9]. With trivial modifications to the proofs, the correctness and completeness
properties of natural rewriting hold also with the above refinement.

Example 12. Consider the subterm t = 10! % (s(0)−s(0)) of the term t2
in Example 1. Consider also the left-hand sides of the rules (3) and (4): l3 =
M % s(N) and l4 = (0 − s(M)) % s(N). We have that DPl3(t) = {2}, DPl4(t) =
{1, 2}, and DPl′(t) = {Λ} for any other lhs l′. Then, the set P = {2,Λ} covers all
lhs’s. Now, let us continue with term t2 = 10! % (s(0)−s(0)) ≈ 10! % 0
from Example 11. With Definition 9, the redexes computed by the natural rewrit-
ing strategy become even more refined. Specifically, we have DR(t2) = {〈1.2〉}
and the redex at position 1.1 is not considered anymore. The reason is that
since position 2 in 10! % (s(0)−s(0)) is enough to obtain a set cover of all
the positions demanded by rules (3) and (4), position 1 in the subterm t2|1 is
not considered as demanded, i.e., SP(t2|1) = FP(t2|1) = {2, Λ}. Finally, we have
only the optimal rewriting step for position 1.2 from the term t2 and the optimal
rewrite sequence:

10! % (s(0)−s(0)) ≈ 10! % 0

114 S. Escobar, J. Meseguer, and P. Thati

→ 10! % (0−0) ≈ 10! % 0 → 10! % 0 ≈ 10! % 0 → True

Note that we have DR(t3) = {〈1.2〉} and DR(t4) = {〈Λ〉} for the terms t3 =
10! % (0−0)) ≈ 10! % 0 and t4 = 10! % 0 ≈ 10! % 0 above.

5 Conclusion

We have extended natural rewriting to general rewriting systems while preserv-
ing correctness and completeness w.r.t. head-normal forms. A noteworthy feature
of this generalization is that it is conservative, i.e., the generalized strategy co-
incides with the original one for the class of left-linear constructor systems. This
makes the strategy available for both expressive equational languages and for
rewriting logic languages. Since our generalization is conservative, we inherit all
the optimality results presented in [9] for left-linear constructor systems. An im-
portant problem for future research is to identify optimality results for this new
generalized natural rewriting strategy. We believe that the notion of inductively
sequential terms introduced in [9] can provide significant insights for the more
general optimality results, since this notion identifies specific terms, rather than
classes of rewrite systems, that can be optimally evaluated. Another observa-
tion is that our generalized natural rewriting is easily implementable, since the
demanded set of redexes is computed using simple recursive procedures. Indeed
in [10], we have proposed a technique for the efficient implementation of the
natural rewriting strategy of [9] for left-linear constructor systems, which moves
the computation of the demanded set of redexes to compilation phase instead
of execution phase. Extending this implementation technique to the generalized
rewriting strategy would be considered as future work. However, a complexity
analysis of the generalized natural rewriting strategy is also planned.

This work provides a basis for a subsequent generalization of natural rewriting
first to narrowing, already achieved in [12], and second to even more expressive
rewrite theories suited for concurrent system specifications [20] and support-
ing: (i) sorts and subsorts; (ii) rewriting modulo axioms such as associativity,
commutativity, identity, and so on; and (iii) conditional rewriting.

Acknowledgements. S. Escobar has been partially supported by projects MEC
TIN 2004-07943-C04-02, EU ALA/95/23/2003/077-054, GV Grupos03/025 and
grant 2667 of Universidad Politécnica de Valencia during a stay at Urbana-
Champaign, USA.

References

1. S. Antoy. Definitional trees. In Proc. of the 3rd International Conference on Alge-
braic and Logic Programming ALP’92, volume 632 of Lecture Notes in Computer
Science, pages 143–157. Springer-Verlag, Berlin, 1992.

2. S. Antoy. Constructor-based conditional narrowing. In Proc. of 3rd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming, PPDP’01, pages 199–206, Florence, Italy, Sept. 2001. ACM.

Natural Rewriting for General Term Rewriting Systems 115

3. S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies for functional
logic languages. In Proc. of the Fourteenth International Conference on Logic
Programming (ICLP’97), pages 138–152. MIT Press, 1997.

4. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Journal of
the ACM, volume 47(4), pages 776–822, 2000.

5. S. Antoy and S. Lucas. Demandness in rewriting and narrowing. In M. Comini
and M. Falaschi, editors, Proc. of the 11th Int’l Workshop on Functional and (Con-
straint) Logic Programming WFLP’02, volume 76 of Electronic Notes in Theoretical
Computer Science. Elsevier Sciences Publisher, 2002.

6. P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a rewrit-
ing logic point of view. Theoretical Computer Science, 285:155–185, 2002.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

8. A. Deursen, J. Heering, and P. Klint. Language Prototyping: An Algebraic Speci-
fication Approach. World Scientific, 1996.

9. S. Escobar. Refining weakly outermost-needed rewriting and narrowing. In
D. Miller, editor, Proc. of 5th International ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming, PPDP’03, pages 113–123. ACM
Press, New York, 2003.

10. S. Escobar. Implementing natural rewriting and narrowing efficiently. In
Y. Kameyama and P. J. Stuckey, editors, 7th International Symposium on Func-
tional and Logic Programming (FLOPS 2004), volume 2998 of Lecture Notes in
Computer Science, pages 147–162. Springer-Verlag, Berlin, 2004.

11. S. Escobar, J. Meseguer, and P. Thati. Natural narrowing as a general
unified mechanism for programming and proving. Technical Report DSIC-
II/16/04, DSIC, Universidad Politécnica de Valencia, 2004. Available at
http://www.dsic.upv.es/users/elp/papers.html.

12. S. Escobar, J. Meseguer, and P. Thati. Natural narrowing for general term rewrit-
ing systems. In J. Giesl, editor, Proc. of 16th International Conference on Rewrit-
ing Techniques and Applications, RTA’05, Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2005.

13. K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST
Series, 1998.

14. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel Leaf: A Logic plus
Functional Language. Journal of Computer and System Sciences, 42(2):139–185,
1991.

15. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: Algebraic Specification in Action,
pages 3–167. Kluwer, 2000.

16. J. C. González-Moreno, M. T. Hortalá-González, F. J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, 40(1):47–87, 1999.

17. D. Hofbauer and M. Huber. Linearizing term rewriting systems using test sets.
Journal of Symbolic Computation, 17:91–129, 1994.

18. G. Huet and J.-J. Lévy. Computations in Orthogonal Term Rewriting Systems,
Part I + II. In Computational logic: Essays in honour of J. Alan Robinson, pages
395–414 and 415–443. The MIT Press, Cambridge, MA, 1992.

19. R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A Demand Driven
Computation Strategy for Lazy Narrowing. In Proc. of PLILP’93, volume 714 of
Lecture Notes in Computer Science, pages 184–200. Springer-Verlag, Berlin, 1993.

116 S. Escobar, J. Meseguer, and P. Thati

20. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

21. A. Middeldorp. Call by need computations to root-stable form. In Proceedings of
the 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 94–105. ACM Press, New York, 1997.

22. S. Peyton-Jones. The Implementation of Functional Programming Languages.
Prentice Hall International, London, 1987.

23. B. Salinier and R. Strandh. Efficient simulation of forward-branching systems with
constructor systems. Journal of Symbolic Computation, 22:381–399, 1996.

24. R. Sekar and I. Ramakrishnan. Programming in equational logic: Beyond strong
sequentiality. Information and Computation, 104(1):78–109, 1993.

Negation Elimination for Finite PCFGs

Taisuke Sato and Yoshitaka Kameya

Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro, Tokyo, Japan, CREST/JST

{sato, kameya}@mi.cs.titech.ac.jp
http://sato-www.cs.titech.ac.jp

Abstract. We introduce negation to a symbolic-statistical modeling
language PRISM and propose to eliminate negation by program trans-
formation called negation technique which is applicable to probabilistic
logic programs. We also introduce finite PCFGs (probabilistic context
free grammars) as PCFGs with finite constraints as part of generative
modeling of stochastic HPSGs (head-driven phrase structure grammars).
They are a subclass of log-linear models and allow exact computation of
normalizing constants. We apply the negation technique to a PDCG
(probabilistic definite clause grammar) program written in PRISM that
describes a finite PCFG with a height constraint. The resulting program
computes a normalizing constant for the finite PCFG in time linear in
the given height. We also report on an experiment of parameter learn-
ing for a real grammar (ATR grammar) with the height constraint. We
have discovered that the height constraint does not necessarily lead to a
significant decrease in parsing accuracy.

1 Introduction

1.1 Background

Symbolic-statistical modeling is a discipline where symbolic reasoning and statis-
tical inference cooperate to identify the underlying structure of our observations
of interest such as genome sequences, disease pedigrees and documents in a natu-
ral language that consist of structured symbols with various types of uncertainty.
There are several formalisms already developed. HMMs (hidden Markov models)
are a kind of stochastic automata used to identify for instance genes in genome
sequences (and in many other areas) [1]. PCFGs (probabilistic context free gram-
mars) are CFGs such that rule selection in a string derivation is probabilistic
and they are applied to parsing and scene analysis [2, 3]. The most popular one
is BNs (Bayesian networks) that can represent finite distributions of any type
[4]. Recently they were applied to linkage analysis and beat competitors [5].

However, while HMMs, PCFGs and BNs can express uncertainty in terms of
probabilities, they are all at propositional level and their logical power is limited.
They do not have logical variables or quantifiers. There is no explicit treatment
of negation either. Naturally there have been efforts for upgrading these for-
malisms to the first-order level in various communities including the LP (logic

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 117–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

118 T. Sato and Y. Kameya

programming) community, the ILP (inductive logic programming) community
and the BN community among which is PRISM, a symbolic-statistical modeling
language, we have been developing.

PRISM1 is a probabilistic extension of Prolog augmented with a built-in EM
learning routine2 for statistical inference of parameters embedded in PRISM
programs [7]. It is intended for modeling complex systems governed by rules
and probability. Theoretically PRISM is a probabilistic Turing machine with a
parameter learning mechanism which subsumes HMMs, PCFGs and discrete BNs
in terms of expressive power, probability computation and parameter learning
[8]. But what is genuinely innovative about it is that it opens a way to use
programs as statistical models (programs are statistical models themselves in
PRISM) and frees the user of having to derive a new EM algorithm for parameter
learning for a new statistical model everytime he/she invents it.

Unfortunately the current PRISM lacks negation, which narrows the class of
definable distributions and also causes inconveniences in modeling. To overcome
this limitation, we propose to deal with negation by program transformation.
The point is that we allow negated PRISM programs but eliminate negation by
program transformation, thus recover negation-free PRISM programs.

There are two deterministic algorithms available for negation elimination of
source programs. A general one is FOC (first order compiler), a determinis-
tic program transformation algorithm originally developed for non-probabilistic
logic programs containing universally quantified implications3 [9]. It uses con-
tinuation4 to compile universally quantified implications into executable form.
FOC is general and can deal with large programs but tends to generate com-
plicated and less efficient programs from the viewpoint of the PRISM’s tabled
search5 [10, 11]. In this paper, we alternatively propose to use the negation tech-
nique [12]. It is a deterministic transformation algorithm to synthesize a logic
program that traces failed computation paths of the original program. While the

1 URL = http://sato-www.cs.titech.ac.jp/prism/
2 EM learning here means parameter learning by the EM algorithm which is an

iterative algorithm for maximum likelihood estimation of parameters associated with
a probabilistic model with hidden variables [6]. Hidden variables are those that are
not directly observable like a disease in contrast to symptoms thereof.

3 Universally quantified implications are formulas of the form ∀x (φ ⇒ ϕ) and nega-
tion is a special case (¬φ is equal to φ ⇒ false).

4 Continuation is a data to represent the rest of computation. Usually it is a higher
order object in functional programming but here we just use a first order term
called continuation term, representing the next goal to be executed with the help of
auxiliary clauses.

5 Tabling is a search technique to record calling patterns of goals and their solutions
for later use not to repeat the same search. It can avoid exponential explosion in
the search space by sharing computation paths and brings about the same effect as
dynamic programming in top-down search. Compilation by FOC introduces contin-
uation terms that can be an obstacle to tabled search as they differentiate similar
goals syntactically.

Negation Elimination for Finite PCFGs 119

negation technique is only applicable to the negation of definite clause programs,
synthesized programs do not carry continuation terms and hence are more prefer-
able in view of the tabled search in PRISM. The original negation technique was
intended for non-probabilistic programs but we use here an extended version the
use of which is justified by the distribution semantics [13], the formal semantics
of PRISM programs.

1.2 Generative Modeling and Failure

Negation significantly expands the applicability of PRISM modeling, far beyond
HMMs and PCFGs. We here detail our statistical motivation behind the in-
troduction of negation. In the following we do not make a distinction between
negation (logical notion) and failure (procedural notion) for brevity as we deal
only with cases where they coincide.

Statistical models defined by PRISM are basically generative. By generative
we mean PRISM programs describe a sequential stochastic process of generating
observations such as one for the left-most derivation of sentences by a PCFG,
where rules are probabilistically chosen to expand non-terminals. The implicit
assumption is that the generation process never fails regardless of whether it is
finite or infinite. Popular probabilistic models such as HMMs, PCFGs and BNs
are considered generative and belong to the failure-free class.

We now allow a generative process to fail. So PRISM programs may fail.
If failure occurs after a probabilistic choice is made, we lose probability mass
placed on the choice and the sum of probabilities of all successful computation
paths will be less than one. Statistically this implies that we have to renormalize
probabilities by computing a normalizing constant P (success) where success
denotes an event of occurrence of successful computation. Also we have to assume
that what is observed is conditional probabilities P (x | success) where x is an
observation. In other words, by introducing failure, we shift to a class of log-
linear models in general6 [14]. They are quite flexible but the computational
burden, especially computing a normalizing constant, is sometimes so high as to
make their use prohibitive.

Despite such difficulty, we allow failure in our modeling because it enables us
to use complex constraints for precise modeling. We impose constraints on each
computation path that possibly generates an observation and filter out those
paths that fail to satisfy the constraints. The probability mass is distributed over
the remaining successful paths. The mathematical correctness of this modeling,
i.e. probabilities sum to unity, is guaranteed by renormalizing success probabil-
ities. This approach looks naive but in reality unavoidable when constraints are
too complex for human beings to check their consistency.

In our case, we are aiming to model generative stochastic HPSGs (head-
driven phrase structure grammars) [15] as one of the PRISM targets. Stochastic

6 A distribution has the form p(x) = Z−1 exp(
∑

i
νifi(x)) where νi is a coefficient,

fi(x) a feature and Z a normalizing constant. HMMs and PCFGs correspond to the
special case where Z = 1.

120 T. Sato and Y. Kameya

HPSGs are a class of highly sophisticated unification grammars where lexical
constraints and a few linguistic principles interact to specify a distribution of
sentences. There was an attempt to formalize generative stochastic HPSGs by
Brew [16] but faced with theoretical difficulties due to failure caused by con-
flicting constraints. As a result researchers in the area turned to non-generative
log-linear models and their parameter learning [17, 18, 19]. Notwithstanding we,
appreciating the simplicity and understandability of generative models, decided
to pursue a generate-and-test approach using failure to generative stochastic
HPSGs. As a concrete step toward this end, we introduce finite PCFGs which
we explain next.

1.3 Finite PCFGs

Finite PCFGs are PCFGs with finite constraints that make them generate only
a finite number of sentences. We for example impose an upper bound of the
height of parse trees as a finite constraint. As long as the tree being derived is
within the limit, we allow free derivation but once a constraint is violated we
force the derivation to fail. Other types of finite constraint are possible such as
the number of rule applications but we use the height constraint as a canonical
one in this paper.

As a result of the height constraint, the number of sentences licensed by a
PCFG becomes finite and we can, at least in theory, exactly compute a nor-
malizing constant P (success). Once this is done, it is possible to statistically
infer parameters associated with the PCFG from data by applying a new EM
algorithm proposed for generative models with failure [11]. The new EM algo-
rithm requires a failure program which simulates failed computations of the finite
PCFG program. We synthesize it by applying the negation technique [12] to a
PDCG (probabilistic definite clause grammar) program describing the PCFG.

Our contributions are as follows. We allow negation of probabilistic logic pro-
grams and propose negation elimination by the negation technique at compile
time. We then apply it to a specific case of finite PCFGs which play an impor-
tant role in our approach to generative stochastic HPSG modeling and show that
computations concerning finite PCFGs with a height constraint can be done in
polynomial time, not in exponential time. We also show by a learning experi-
ment that the difference in parsing tasks between a finite PCFG with a height
constraint and the corresponding non-finite PCFG is small.

In what follows, we first give an overview of PRISM [7]. We then review
the negation technique by an example and show how we should modify it to
accommodate probabilistic primitives in PRISM while keeping its semantics.
We then apply the negation technique to finite PCFGs. Finally we report an
experiment of parameter learning with a finite PCFG applied to a real
corpus.

Our work lies at the borders of probabilistic semantics, negation, tabling
and statistical natural language processing. Due to space limitation however,
an in-depth treatment of each topic is difficult and our explanations will be
example-based to save space for formal definitions. The formal description of

Negation Elimination for Finite PCFGs 121

the semantics of PRISM and the analysis of its statistical learning are detailed
in [8]. Most of the related work concerning first-order probabilistic modeling is
omitted. The reader is referred to [7, 20, 14, 21, 22, 23, 24, 8, 25, 26, 27, 28]. He/she
is assumed to be familiar with basics of statistical language models [2] as well
as logic programming [29].

2 Preliminaries

Hereafter we use logic programs and follow Prolog conventions. A logic program
DB is a set of definite clauses A :- B1, . . . , Bn (n ≥ 0) where A is a head
and Bi (1 ≤ i ≤ n), an atom, is a subgoal. Unit clauses are those with n = 0
and goal clauses are those without a head. Variables in a clause are assumed
to be universally quantified at the clause head. They are expressed by a string
beginning with an upper case letter such as X1 or just by underscore ‘_’ in case
of anonymous variables. Expressions (clauses, atoms, terms) without variables
are said to be ground.

PRISM is a symbolic-statistical modeling language which is a probabilistic ex-
tension of Prolog such that unit clauses have a parameterized distribution. So unit
clauses are probabilistically true. PRISM has been used to describe (and perform
parameter learning of) a variety of probabilistic models including naive Bayes clas-
sifiers, Bayesian networks, HMMs, PCFGs, probabilistic left corner parsing mod-
els, probabilistic graph grammars, linkage analysis programs etc. Now we show in
this paper that PRISM can also describe finite PCFGs and learn their parameters.
Before proceeding we have a quick review of PRISM for self-containedness.

APRISMprogramDB′ is theunion of a set of definite clauses anda set of ground
atoms F = {msw1, msw2, . . .}. Each msw = msw(id,v) represents a probabilistic
choice v by a trial of random switch id. A value declaration value(id,[v1, . . . , vk])
attached toDB′ specifies that v is one of v1, . . . , vk. (The Herbrand interpretations
of) F has a parameterized probability measure Pmsw (basic distribution)7. PRISM
has a formal semantics called distribution semantics in light of which DB′ denotes
a probability measure extending Pmsw over the set of possible Herbrand interpreta-
tions of the program. The execution of a PRISM program is just an SLD derivation
except that a PRISM primitive msw(id,V) returns a probabilistically chosen value
v forV. BecausePRISM semantics is a generalization of the standard logic program-
ming semantics, in an extreme case of assigning probabilities 0 or 1 to msw atoms,
PRISM is reduced to Prolog.

We write a PRISM program to define a distribution such as the distribu-
tion of sentences. Statistical inference of parameters associated with the basic
distribution Pmsw is carried out by special EM algorithms developed for PRISM
programs. The gEM (graphical EM) algorithm incorporates the idea of dynamic
programming and is applicable to non-failing PRISM programs [30]. Also there

7 We interchangeably use a probability measure and a probability distribution for the
sake of familiarity. Pmsw is a direct product of infinitely many Bernoulli trials of finitely
many types specified by the user.

122 T. Sato and Y. Kameya

is an enhanced version [11] which amalgamates the gEM algorithm and the FAM
algorithm [24] to efficiently deal with PRISM programs that may fail.

Here is an example of PRISM program reproduced from [11]. This program
simulates a sequence of Bernoulli trials and gives a distribution over ground
atoms of the form ber(n,l) such that l is a list of outcomes of n coin tosses.

target(ber,2).

values(coin,[heads,tails]).

:- set_sw(coin,0.6+0.4).

ber(N,[R|Y]):-

N>0,

msw(coin,R), % probabilistic choice

N1 is N-1,

ber(N1,Y). % recursion

ber(0,[]).

Fig. 1. Bernoulli program

We use target(ber,2) to declare that we are interested in the dis-
tribution of ber/2 atoms8. To define a Bernoulli trial we declare
values(coin,[heads,tails]) which introduces a discrete binary random
variable named coin whose range is {heads, tails} in the disguise of exclusively
true atoms msw(coin,v) where v is either heads or tails. In PRISM a program
is executed like Prolog, i.e. in a top-down left-to-right manner in the sampling
mode (there are two other execution modes) and a call to msw(coin,R) returns a
sampled value in R. msw atoms are primitives to make a probabilistic choice and
their probabilities are called parameters.

:- set_sw(coin,0.6+0.4) is a directive on loading this program. It sets
parameters of msw(coin,·), i.e. the probability of msw(coin,heads) to 0.6 and
that of msw(coin,tails) to 0.4, respectively. Next two clauses about ber/2
should be self-explanatory. Clauses behave just like Prolog clauses except that R
works as a random variable such that P (R = heads) = 0.6 and P (R = tails) =
0.4. The query :- ber(3,L) will return for instance L = [heads,heads,tails].

3 Finite PDCG Program and the Success Probability

We here closely examine a PRISM program defining a finite PCFG. The PRISM
program in Figure 2 is a probabilistic DCG (definite clause grammar) program
written as a meta interpreter.

8 p/nmeans that a predicatephas n arguments.We call an atomA p atom if the predicate
symbol of A is p.

Negation Elimination for Finite PCFGs 123

pdcg(L):-

start_symbol(A), max_height(N), pdcg2(A,L,N).

pdcg2(A,[A],N):-

N>=0, terminal(A).

pdcg2(A,L,N):-

N>=0, \+terminal(A), msw(A,RHS), N1 is N-1, pdcg3(RHS,L,N1).

pdcg3([],[],_).

pdcg3([X|R],L3,N):-

pdcg2(X,L1,N), pdcg3(R,L2,N), app(L1,L2,L3).

app([],A,A).

app([A|B],C,[A|D]):- app(B,C,D).

Fig. 2. A PDCG program with a height constraint

This program succinctly specifies a finite PCFG with a height constraint and sim-
ulates the leftmost derivation of sentences. CFG rules are supplied in the form of
PRISM’s value declarations. We for example declare value(np,[[n],[s,np]])
to say that np has two rules np -> n and np -> s np9. max_height(N) says that
the height of a parse tree must be at most N. msw(A,RHS) represents a proba-
bilistic choice in the derivation. When msw(A,RHS) is executed with A = np, one
of [n] or [s,np] is probabilistically chosen as RHS. start symbol(A) returns in
A a start symbol such as ‘s’ corresponding to the category of sentence.

The counter N holds the allowed height of the parse trees and is decremented
by one whenever a production rule is applied. When N becomes less than 0, the
derivation fails. So the program never generates a sentence whose height is more
than N asserted by max_height(N).

EM Learning from observed sentences of parameters associated with this
finite PCFG is performed by a new EM algorithm for generative models with
failure proposed in [11]. Unlike the Inside-Outside algorithm10 however, it needs
a program that traces failed computation paths of the PDCG program, which
is a challenging task. As an intermediate step, we derive a program specialized
to computing the success probability. We transform the PDCG program to the

9 We also accept left recursive rules such as s -> s s. An infinite loop caused by
them in top-down parsing is detected and properly handled by the PRISM’s tabling
mechanism.

10 The Inside-Outside algorithm is a standard EM algorithm for PCFGs [31]. It takes
O(n3) time for each iteration where n is a sentence length. Compared to the gEM
(graphical EM) algorithm employed by PRISM however, it is experimentally con-
firmed that it runs much slower, sometimes hundred times slower than the gEM
algorithm depending on grammars [32].

124 T. Sato and Y. Kameya

success:- % success:- pdcg(_).

start_symbol(A),

max_height(N),

success2(A,N).

success2(A,N):-

N>=0,

(terminal(A)

; \+terminal(A),

msw(A,RHS),

N1 is N-1,

success3(RHS,N1)).

success3([],_).

success3([A|R],N):-

success2(A,N),

success3(R,N).

Fig. 3. success program

success program shown in Figure 3 by dropping the arguments holding a partial
sentence as a list.
This program is obtained by applying unfold/fold transformation to success:-
pdcg(L) [33]. In the transformation we used a special property (law) of the
append predicate such that ∀ L1, L2 ∃ L3 app(L1, L2, L3) holds for lists L1, L2 and
L3. The correctness of unfold/fold transformation, i.e. the source program and
the transformed program define the same probability measure, is proved from the
fact that the distribution semantics is an extension of the least model semantics.
We here present a sketch of the proof.

Let Rsuccess be the clauses in Figure 3. Theoretically the success program
DBsuccess is the union of Rsuccess and the set of probabilistic ground atoms F =
{msw1, msw2, . . .} with a basic distribution Pmsw. To prove that the transformation
preserves the distribution semantics, it is enough to prove that for any true atoms
F ′ = {msw′1, msw′2, . . .}(⊆ F) sampled from Pmsw, the transformation preserves
the least model of R ∪ F ′. However this is apparent because our transformation
is unfold/fold transformation (using a ‘law’ about the append predicate) that
preserves the least model semantics.

Since the computation by the query :- success w.r.t. the success program
faithfully traces all successful paths generated by :- pdcg(_) and vice versa, we
have ∑

x:sentence P (x) = P (pdcg(_)) = P (success).

Note that the success program runs in time linear in the maximum height N
thanks to the PRISM’s tabling mechanism [10] as is shown in Figure 7 (left).

Negation Elimination for Finite PCFGs 125

The graph is plotted using the ATR grammar, a CFG grammar for the ATR cor-
pus11 [34]. In the probability computation, we employed a uniform distribution,
i.e. every rule is chosen with the same probability for each nonterminal. The
success program is further transformed to derive a special program necessary
for maximum likelihood estimation.

4 Negation Technique

In order to perform EM learning of parameters associated with the PDCG pro-
gram in the previous section, we have to know not only the probability of deriva-
tion failure, but have to know how production rules are used in the failed deriva-
tion [11]. To obtain such information is not a trivial task. We have to record
each occurrence of msw atoms in every computation path regardless of whether
it leads to success or not, which, naively done, would take exponential time.

Fortunately we can suppress the exponential explosion by sharing partial
computation paths even for failed computations. As far as successful compu-
tations are concerned, it has been proved to be possible by the tabled search
mechanism of PRISM [8]. Hence we have only to synthesize an ordinary PRISM
program whose successful computation corresponds to the failed computation of
the original program and apply the tabled search to the synthesized program. We
here employ the negation technique [12] to synthesize such a negated program.
We give a short synthesis example in Figure 4 in place of the formal description.

mem(V,[V|W]).

mem(V,[U|W]):- mem(V,W).

%---

mem(X,Y) :-

(exists([V,W],[X,Y]=[V,[V|W]])

; exists([V,U,W],[X,Y]=[V,[U|W]], mem(V,W)))

%---

not_mem(X,Y) :-

\+([X,Y]=[V,[V|W]]),

(\+([X,Y]=[V,[U|W]])

; [X,Y]=[V,[U|W]],not_mem(V,W)).

Fig. 4. Negation example

We negate a familiar logic program mem/2 program by the negation tech-
nique. The source program is placed on the top layer in Figure 4. First we take

11 The ATR corpus is a collection of 10,995 Japanese conversational sentences and
their parses. The ATR grammar is a manually developed CFG grammar for the
ATR corpus. It contains 861 CFG rules.

126 T. Sato and Y. Kameya

the iff form of the source program (middle layer). The iff form is a canonical
representation of the source program and exists([V,W],[X,Y]=[V,[V|W]])
is a Prolog representation of ∃V,W([X,Y]=[V,[V|W]]). We then negate both
sides of the iff form. The left hand side mem(X,Y) is negated to not(mem(X,Y)).
On the right hand side, the first disjunct exists([V,W],[X,Y]=[V,[V|W]])
is negated to all([V,W],not([X,Y]=[V,[V|W]])), a Prolog term representing
∀V,W¬([X,Y]=[V,[V|W]]).

Likewise the second disjunct exists([V,U,W],([X,Y]=[V,[U|W]], mem(V,
W))) is negated to all([V,U,W],([X,Y]=[V,[U|W]]
⇒ not(mem(V,W)))).This is further transformed to
all([V,U,W],not([X,Y]=[V,[U|W]]); exists([V,U,
W], ([X,Y]=[V,[U|W]],not(mem(V,W)))) by using the property of ‘=’
predicate such that ∀X(Y = t[X] ⇒ φ) ⇔ ∀X (Y = t[X]) ∨ ∃X(Y = t[X] ∧ ¬φ) holds
for any φ in the Herbrand universe12. Finally we replace not(mem(·,·)) with a
new predicate not mem(·,·) and not(s = t) with \+(s = t) to be executable.
The bottom program computes exactly the complement of mem relation defined
by the top layer mem program.

Let DB be the source program and DBc the negated program. A logic pro-
gram is said to be terminating if an SLD derivation using a fair selection rule for
:-A w.r.t. the program terminates successfully or finitely fails for every ground
atom A. A relation q(x) is said to be complementary to r(x) if q(x)∨r(x) is true
for every x and there is no x such that q(x) ∧ r(x).

Theorem 1. [12] Suppose DBc is terminating. Relations over the Herbrand uni-
verse defined by DBc through its least model are complementary to those defined
by DB.

Proof: The least model of DB defines relations over the Herbrand universe for
an interpretation of each predicate q(x). They satisfy the if-and-only-if definition
q(x) ⇔W [x]. Hence the complementary relations satisfy the negated if-and-only-
if definition ¬q(x) ⇔ ¬W [x]. Since operations on ¬W [x] used in the negation
technique are substitution of equals for equals in the Herbrand universe, these
complementary relations satisfy iff(DBc), i.e. the collection of the if-and-only-if
definition for each predicate, thereby giving a fixed point of iff(DBc) which must
coincide with the least model of DBc because iff(DBc) is terminating, and hence
has only one fixed point of the immediate consequence operator. �

5 Negating ‘Success’ Program

We apply an extended negation technique to the success program in Figure 3
and obtain the PRISM program for failure shown in Figure 5 after simplifica-
tions. We extend the original negation technique in two points. First noticing that

12 The reason is that for the given Y, the equation Y = t[X] determines at most one X

occurring in t.

Negation Elimination for Finite PCFGs 127

failure:- % failure:- not(success).

start_symbol(A),

max_height(N),

failure2(A,N).

failure2(A,N):- % failure2(A,N):- not(success2(A,N)).

N>=0,

\+terminal(A),

msw(A,RHS),

N1 is N-1,

failure3(RHS,N1).

failure2(_,N):- N<0.

failure3([A|R],N):-

(failure2(A,N)

; success2(A,N), failure3(R,N)).

Fig. 5. failure program

∀y(q(x, y) ⇒ ψ) is equivalent to ∀y ¬q(x, y)∨∃y(q(x, y)∧ψ) provided there exists
at most one y satisfying q(x, y) for given x, we use this equivalence to rewrite the
program in the negation process. The use of this equivalence does not invalidate
the proof of Theorem 1 as long as the definition of q(x, y) remains intact. Second
we apply the negation technique to programs containing msw atoms which are a
basic probabilistic primitive in PRISM. ¬(∃ RHS(msw(A, RHS)∧ψ)) is transformed
to ∀ RHS(msw(A, RHS) ⇒ ¬ψ), and further transformed to ∃ RHS(msw(A, RHS)∧¬ψ).
This transformation is justified by the PRISM’s distribution semantics accord-
ing to which msw(A,RHS) should be treated as a normal user-defined predicated
defined by a single ground atom. So we may assume in the transformation there
exists at most one RHS for a given A. We also use the fact that during the com-
putation of :- failure, when msw(A,RHS) is called with A ground, it never
fails.

The failure program in Figure 5 is terminating. We prove using Theorem 1
and the definition of the formal semantics of PRISM programs that the proba-
bility of failure is exactly 1− P (success)13.

Proposition 1. P (success) + P (failure) = 1.

Proof: Suppose F ′ = {msw′1, msw′2, . . .} is an arbitrary set of msw atoms. Let
DBsuccess (resp. DBfailure) be a program consisting of F ′ and the clauses in

13 The generalization of Proposition 1 for negated programs which are terminating is
easy.

128 T. Sato and Y. Kameya

Figure 3 (resp. the clauses in Figure 5) respectively. Since DBfailure is termi-
nating, it follows from Theorem 1 that relations defined by DBsuccess and those
by DBfailure are complementary, in particular success and failure are com-
plementary. As F ′ is arbitrary, it follows from the definition of the distribution
semantics [8] that 1 = P (success∨failure) = P (success)+P (failure). �
To confirm Proposition 1, we let each program compute the success probability
and the failure probability respectively, using a real grammar, the ATR grammar.
We use a uniform distribution for rule selection probabilities for this test. The
maximum height is set to 20. As the snapshot in Figure 6 testifies, probabilities
for success and failure exactly sum to one14.

?- prob(success,Ps),prob(failure,Pf),X is Ps+Pf.

X = 1.0

Pf = 0.295491045124576

Ps = 0.704508954875424

Fig. 6. Probabilities sum to one

The failure program runs in time linear in the maximum height N though we
do not prove it (see Figure 7). We thus have reached an efficient PRISM program
for computing failure required by EM learning.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100

Runtime (msec)

Height N

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100

Runtime (msec)

Height N

Fig. 7. Time for computing P (success) (left) and P (failure) (right) for the ATR
grammar

14 prob/2 is a PRISM built-in to compute the probability of a given atom under the
current parameter values.

Negation Elimination for Finite PCFGs 129

6 Learning Example: The ATR Grammar

To gauge the effect of the height constraint in finite PCFGs, we conducted a small
learning experiment with real data, the ATR corpus and the ATR grammar [34].
In the experiment, as a training corpus and a test corpus, we first randomly picked
up 2,500 and 1,000 sentences from the original corpus, respectively. For the max-
imum height N , the sentences which have only parse trees higher than N are ex-
cluded from the training and test corpora15. For each test sentence, we compared
theheightof theViterbiparse, i.e.most likelyparsebasedon thepurePCFG (whose
parameters are learned by the Inside-Outside algorithm) and that based on the fi-
nite PCFG using a learning algorithm for finite PCFGs is described in [11].

The results are shown in Table 1. In the headers, h1 (resp. h2) indicates the
height of the Viterbi parse based on the pure PCFG (resp. the finite PCFG).
The column headed by ‘h1 > h2’ shows the percentages of test sentences which
hold h1 > h2, and so on. Table 1 shows that the finite PCFG model prefers
shorter parse trees compared to the pure PCFG, hence we may say that we can
add a height preference for parses by finite PCFGs, which is not easily realizable
solely by pure PCFGs.

Table 1. Comparison on the height on Viterbi parses

N h1 > h2 h1 < h2 h1 = h2

15 11.2% 2.1% 86.7%
18 14.2% 1.8% 84.0%
20 6.5% 3.6% 89.9%

Furthermore we evaluate the parsing accuracy with the finite PCFG based
on the traditional criteria16 [2]. The measured accuracy is given in Table 2. As
the size of learning corpus is not large enough compared to the grammar size,
we cannot make a definite comment on the performance differences between the
pure PCFG and and the finite PCFG. However we may say that the parameters
learned only from the parse trees with finite size does not necessarily lead to a
significant decrease in parsing accuracy.
15 The sizes of the training and test corpus are as follows:

height N #training #test

15 2,252 913
18 2,465 990
20 2,492 996

16 The criterion LT (labeled tree) is the ratio of test sentences in which the Viterbi
parse completely matches the answer, i.e. the parse annotated by human. BT (brack-
eted tree) is the ratio of test sentences in which the Viterbi parse matches the answer
ignoring nonterminal labels in non-leaf nodes. 0-CB (zero crossing brackets) is the
ratio of test sentences in which the Viterbi parse does not conflict in bracketing with
the answer.

130 T. Sato and Y. Kameya

Table 2. Parsing accuracy with the pure PCFG and the finite PCFG

LT BT 0-CB

N Pure Finite Pure Finite Pure Finite

15 73.9% 73.7% 75.1% 75.3% 85.2% 84.2%
18 73.4% 72.5% 75.2% 74.5% 85.6% 83.5%
20 73.6% 73.2% 75.8% 75.2% 86.2% 85.3%

7 Conclusion

We have introduced negation to a symbolic-statistical modeling language PRISM
and proposed to synthesize positive PRISM programs from negated ones by
using the negation technique. The synthesized programs are used for PRISM to
perform statistical parameter learning of generative models with failure.

The negation technique in this paper is more general than the original one
presented in [12]. It allows us to use clauses that have internal variables17 as long
as they are uniquely determined by the (left-to-right) execution of the body18.
We have shown in Section 5 that the synthesized PRISM program can exactly
compute the probabilities of complementary relations, in particular the failure
probability.

We also introduced finite PCFGs as PCFGs with finite constraints as part of
generative modeling of stochastic HPSGs. They are a subclass of log-linear mod-
els and allow exact computation of normalizing constants. We have applied the
negation technique to a PDCG program written in PRISM that describes a finite
PCFG with a height constraint. The resulting program can compute a normal-
izing constant for the finite PCFG in time linear in the given height. Although
we have shown only one example of finite PCFG, we have tested two other types
of finite PCFG and found that their normalizing constants are computable in
polynomial time.

Finally we conducted an EM learning experiment using the ATR corpus and
the ATR grammar with a height constraint. We discovered that the height con-
straint does not heavily affect the performance of parsing tasks. Such comparison
of finite and non-finite grammars is unprecedented in statistical natural language
processing to our knowledge, though to what extent this result is generalized re-
mains a future research topic.

References

1. Rabiner, L.R., Juang, B.: Foundations of Speech Recognition. Prentice-Hall (1993)
2. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-

ing. The MIT Press (1999)

17 Internal variables are those occurring only in a clause body.
18 For example the negation technique is applicable to a clause such as p(X):-

length(X,Y),q(X,Y) where Y is the length of a list X.

Negation Elimination for Finite PCFGs 131

3. Ivanov, Y., Bobick, A.: Recoginition of visual activities and interactions by stochas-
tic parsing. IEEE Trans. Pattern Aanl. and Mach. Intell. 22 (2000) 852–872

4. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)

5. Fishelson, M., Geiger, D.: Exact genetic linkage computations for general pedigrees.
Bioinformatics 18 Suppl. 1 (2002) S189–S198

6. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley Inter-
science (1997)

7. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI’97). (1997) 1330–1335

8. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15 (2001) 391–454

9. Sato, T.: First order compiler: A deterministic logic program synthesis algorithm.
Journal of Symbolic Computation 8 (1989) 605–627

10. Zhou, N.F., Sato, T.: Efficient Fixpoint Computation in Linear Tabling. In: Pro-
ceedings of the Fifth ACM-SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP2003). (2003) 275–283

11. Sato, T., Kameya, Y.: A dynamic programming approach to parameter learning of
generative models with failure. to be presented at ICML 2004 workshop SRL2004
(2004)

12. Sato, T., Tamaki, H.: Tansformational logic program synthesis. In: Proceedings
of the International Conferenece on Fifth Generation Computer Systems FGCS84.
(1984) 195–201

13. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming
(ICLP’95). (1995) 715–729

14. Cussens, J.: Loglinear models for first-order probabilistic reasoning. In: Proceed-
ings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI’99).
(1999) 126–133

15. Sag, I., Wasow, T.: Syntactic Theory: A Formal Introduction. Stanford: CSLI
Publications (1999)

16. Brew, C.: Stochastic HPSG. In: Proceedings of the 7th Conference of European
Chapter of the Association for Computational Linguistics (EACL’95). (1995) 83–89

17. Abney, S.: Stochastic attribute-value grammars. Computational Linguistics 23
(1997) 597–618

18. Riezler, S.: Probabilistic Constraint Logic Programming. PhD thesis, Universität
Tübingen (1998)

19. Johnson, M., Geman, S., Canon, S., Chi, Z., Riezler, S.: Estimators for stochastic
unification-based grammars. In: Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics (ACL’99). (1999) 535–541

20. Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence (IJ-
CAI’97). (1997) 1316–1321

21. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI’99). (1999) 1300–1309

22. Muggleton, S.: Learning stochastic logic programs. In Getoor, L., Jensen, D.,
eds.: Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from
Relational Data. (2000)

132 T. Sato and Y. Kameya

23. Getoor, L., Friedman, N., Koller, D.: Learning probabilistic models of relational
structure. In: Proceedings of the Eighteenth International Conference on Machine
Learning (ICML 01). (2001) 170–177

24. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning
44 (2001) 245–271

25. Kersting, K., De Raedt, L.: Basic principles of learning bayesian logic programs.
Technical Report Technical Report No. 174, Institute for Computer Science, Uni-
versity of Freiburg (2002)

26. De Raedt, L., Kersting, K.: Probabilistic logic learning. ACM-SIGKDD Explo-
rations, special issue on Multi-Relational Data Mining 5 (2003) 31–48

27. Marthi, B., Milch, B., Russell, S.: First-order probabilistic models for information
extraction. In: Proceedigs of IJCAI 2003 Workshop on Learning Statistical Models
from Relational Data (SRL03). (2003)

28. Jaeger, J.: Complex probabilistic modeling with recursive relational bayesian net-
works. Annals of Mathematics and Artificial Intelligence 32 (2001) 179–220

29. Doets, K.: From Logic to Logic Programming. The MIT Press (1994)
30. Kameya, Y., Sato, T.: Efficient EM learning for parameterized logic programs.

In: Proceedings of the 1st Conference on Computational Logic (CL2000). Volume
1861 of Lecture Notes in Artificial Intelligence., Springer (2000) 269–294

31. Baker, J.K.: Trainable grammars for speech recognition. In: Proceedings of Spring
Conference of the Acoustical Society of America. (1979) 547–550

32. Sato, T., Abe, S., Kameya, Y., Shirai, K.: A separate-and-learn approach to EM
learning of PCFGs. In: Proceedings of the 6th Natural Language Processing Pacific
Rim Symposium (NLRPS2001). (2001) 255–262

33. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: Pro-
ceedings of the 2nd International Conference on Logic Programming (ICLP’84).
Lecture Notes in Computer Science, Springer (1984) 127–138

34. Uratani, N., Takezawa, T., Matsuo, H., Morita, C.: ATR integrated speech and
language database. Technical Report TR-IT-0056, ATR Interpreting Telecommu-
nications Research Laboratories (1994) In Japanese.

Specialization of Concurrent Guarded Multi-set
Transformation Rules

Thom Frühwirth

Faculty of Computer Science, University of Ulm, Germany
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

Abstract. Program transformation and in particular partial evaluation
are appealing techniques for declarative programs to improve not only
their performance. This paper presents the first step towards developing
program transformation techniques for a concurrent constraint program-
ming language where guarded rules rewrite and augment multi-sets of
atomic formulae, called Constraint Handling Rules (CHR).

We study the specialization of rules with regard to a given goal
(query). We show the correctness of this program transformation: Adding
and removing specialized rules in a program does not change the pro-
gram’s operational semantics. Furthermore termination and confluence
of the program are shown to be preserved.

1 Introduction

Program transformation [PP96] is understood as a sequence of program text
transformations that preserves semantic equivalence but at the same time im-
proves the run-time, space-consumption or other aspects of the given program.
Partial evaluation [MS97] is a popular instance of program transformation and
of program specialization, which optimizes a given program for known values of
the input.

Program transformation goes especially well with declarative (functional,
logic, constraint) programming languages due to their clean semantics (avoid-
ance of side-effects).

In the rule-based CHR language, we are interested in program specialization
with regard to a given goal (query). We consider the rules that are applicable
to the goal in any possible context (state of computation). We would like to
specialize these rules for the given goal.

Our work is motivated by a renewed (and as we think, increasing) interest in
program transformation and by the unique combination of features that the CHR
language offers, in particular the multi-set programming style and the so-called
propagation rules that add information without removing any. On one hand,
these features mean that we have to adopt existing program transformation
techniques for them or even come up with new ones, and on the other hand, there
is hope that they make certain program transformations more straightforward.

We now discuss the appeal of program transformation and the special features
of the CHR language in more detail.

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 133–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

134 T. Frühwirth

Appeal of Program Transformation. Program transformation, and in particular
rule specialization, have potential applications in the following areas:

– Using the specialized rules at run-time should increase time and space effi-
ciency.

– In concurrent languages like CHR, we also can eliminate communication
channels, synchronization points and don’t care nondeterminism [EGM01].

– Verification and model checking can be done by program transformation
[DP99, FPP01,RKRR04].

– Agent can be specialized to a specific context (Example in [EGM01]).
– Constraint solving can be improved, since particular classes of optimization

problems like scheduling typically have a certain structure [Wal03].
– A complete set of specialized rules can be regarded as conditional or qualified

answer for the user.
– Agent communication can be improved by exchanging conditional answers

[PGGS98].

Constraint Handling Rules (CHR). In constraint solving, efficient special-purpose
algorithms are employed to solve sub-problems involving distinguished relations
referred to as constraints. CHR [Frü98] is a concurrent committed-choice con-
straint logic programming language consisting of guarded rules that transform
multi-sets of constraints into simpler ones until they are solved.

In CHR, one distinguishes two kinds of rules: Simplification rules replace
constraints by simpler constraints while preserving logical equivalence, e.g.
X≥Y∧Y≥X⇔ X=Y. Propagation rules add new constraints, which are logically
redundant, but may cause further simplification, e.g. X≥Y∧Y≥Z⇒ X≥Z. The
combination of propagation and multi-set transformation of logical formulae in
a rule-based language that is concurrent, guarded and constraint-based make
CHR a rather unique declarative programming language.

Typically, CHR programs are well-behaved, i.e. terminating and confluent.
Confluence means that the result of a computation is independent from the or-
der in which rules are applied to the constraints. Once termination has been
established [Frü02], there is a decidable, sufficient and necessary test for conflu-
ence [Abd97, AFM99].

Related Work. Since CHR can be seen as an extension of concurrent constraint
programming (CCP) [SR90] by multiple heads (multi-sets) and propagation
rules, literature on program transformation for concurrent constraint and logic-
based programming languages is relevant: [EGM01] deals with transformations
of concurrent constraint logic programs, [FPP04] deals with constraint logic pro-
grams (CLP), and [UF88] deals with a guarded concurrent logic programming
language called GHC.

Due to propagation rules and the multi-set character of CHR, the above
results are not directly applicable. For example, multiple heads mean that unlike
CCP, constraints are usually defined by several rules, and that unlike CCP and
GHC, different constraints can be defined in one rule by their interaction. GHC

Specialization of Concurrent Guarded Multi-set Transformation Rules 135

lacks built-in constraints and thus does not feature guard checking by logical
implication. CLP among other things lacks concurrency. Moreover, these related
works are not concerned directly with rule specialization, but with unfold/fold
transformations.

Outline of the Paper. In Section 2, we define the CHR programming language.
Section 3 introduces rule specialization. The next section shows correctness by
considering specialized rules as redundant rules. The section also shows preser-
vation of well-behavedness. Before we conclude, Section 5 gives some more ex-
amples.

2 The CHR Language

In this section we give an overview of syntax and semantics for constraint han-
dling rules (CHR) [Frü98, FA03]. Readers familiar with CHR can skip this section
(except for the introduction of the running example max maybe).

2.1 Syntax of CHR

We use two disjoint sets of predicate symbols for two different kinds of con-
straints: built-in constraint symbols and CHR constraint symbols (user-defined
symbols).

Built-in constraints are handled by a given, predefined constraint solver. We
assume that these solvers are well-behaved (terminating and confluent). Built-in
constraints include =, true, and false. The semantics of the built-in constraints
is defined by a consistent first-order constraint theory CT. In particular, CT
defines = as the syntactic equality over finite terms.

CHR (user-defined) constraints are defined by a CHR program.

Definition 1. A CHR program is a finite set of rules. There are two kinds of
rules:

A simplification rule is of the form

Name @ H ⇔ C B.

A propagation rule is of the form

Name @ H ⇒ C B,

where Name is an optional, unique identifier of a rule, the head H is a non-
empty conjunction of CHR constraints, the guard C is a conjunction of built-in
constraints, and the body B is a goal. A goal is a conjunction of built-in and
CHR constraints. A trivial guard “true” can be omitted together with “”.

A CHR symbol is defined in a CHR program if it occurs in the head of a rule
in the program.

136 T. Frühwirth

Example 1. Let ≤ and < be built-in constraint symbols with the usual meaning.
We define a CHR symbol max, where max(X,Y,Z) means that Z is the maximum
of X and Y:

max(X,Y,Z)⇔ X≤Y Z=Y.
max(X,Y,Z)⇔ Y≤X Z=X.
max(X,Y,Z)⇒ X≤Z ∧ Y≤Z.

The first rule states that max(X,Y,Z) is logically equivalent Z=Y if X≤Y. Analo-
gously for the second rule. The third rule states that max(X,Y,Z) unconditionally
implies X≤Z ∧ Y≤Z.

Note that max will be our running example throughout this text.

2.2 Operational Semantics of CHR

The operational semantics of CHR is given by a transition system.
Let P be a CHR program. We define the transition relation �→P by intro-

ducing two computation steps (transitions), one for each kind of CHR rule (cf.
Figure 1). Since the two computation steps (transitions) are structurally very
similar, we first describe their common behavior and then explain the difference.

In the figure, all meta-variables stand for (possibly empty) conjunctions of
constraints. C and D stand for built-in constraints only, H and H ′ for CHR
constraints only.

Simplify

If (H ⇔ C B) is a fresh variant of a rule in P with variables x̄
and CT |= ∀ (D → ∃x̄(H=H ′ ∧ C))

then (H ′ ∧ G ∧ D) 	→Simplify
P (G ∧ D ∧ B ∧ C ∧ H=H ′)

Propagate

If (H ⇒ C B) is a fresh variant of a rule in P with variables x̄
and CT |= ∀ (D → ∃x̄(H=H ′ ∧ C))

then (H ′ ∧ G ∧ D) 	→Propagate
P (H ′ ∧ G ∧ D ∧ B ∧ C ∧ H=H ′)

Fig. 1. Computation Steps of Constraint Handling Rules

A state is simply a goal, i.e. a conjunction of built-in and CHR constraints.
Conjunctions are considered as multi-sets of conjuncts (conjuncts can be per-
muted). We will usually partition a state into subconjunctions of specific kinds
of constraints. For example, any state can be written as (H ′ ∧ G ∧ D), where
H ′ contains only CHR constraints, D only built-in constraints, and G arbitrary
constraints. Each of the subconjunctions may be empty (equivalent to true).

A (fresh variant of a) rule is applicable to a state (H ′ ∧G∧D) if H ′ matches
its head H and its guard C hold when the built-in constraints D of the state

Specialization of Concurrent Guarded Multi-set Transformation Rules 137

hold. A fresh variant of a rule is obtained by renaming its variables to fresh
variables, x̄.

Matching (one-sided unification) succeeds if H ′ is an instance of H, i.e. it is
only allowed to instantiate (bind) variables of H but not variables of H ′. Match-
ing is logically expressed by equating H ′ and H but existentially quantifying all
variables from the rule, x̄. This equation H ′=H is shorthand for pairwise equat-
ing the arguments of the constraints in H ′ and H, provided their constraint
symbols are equal.

If an applicable rule is applied, the equation H=H ′, its guard C and its body
B are added to the resulting state. Any of the applicable rule can be applied
(don’t care non-determinism). A rule application cannot be undone (CHR is a
committed-choice language without backtracking).

When a simplification rule is applied in the transition Simplify, the matching
CHR constraints H ′ are removed from the state.

The Propagate transition is like the Simplify transition, except that it
keeps the constraints H ′ in the resulting state. Trivial non-termination caused
by applying the same propagation rule again and again is avoided by applying
it at most once to the same constraints [Abd97].

A computation of a goal G in a program P is a sequence S0, S1, . . . of states
with Si �→P Si+1 beginning with the initial state S0 = G and ending in a final
state or diverging. �→∗

P denotes the reflexive and transitive closure of �→P . A
final state is one where either no computation step is possible anymore or where
the built-in constraints are inconsistent (unsatisfiable). When it is clear from the
context, we will drop the reference to the program P .

Example 2. Recall the program for max from Example 1. The first two rules are
simplification rules, that replace max(X,Y,Z) by simpler constraints provided a
guard holds. The third rule propagates constraints. Operationally, we add the
body of the rule as redundant constraints, the max constraint is kept.

To the goal max(1,2,M) the first rule is applicable:

max(1, 2, M) �→Simplify M=2.

To the goal max(A,B,M) ∧ A<B the first rule is applicable:

max(A,B,M) ∧ A<B �→Simplify M=B ∧ A<B.

To the goal max(A,A,M) both simplification rules are applicable. In both cases
the result is M=A.

max(A, A, M) �→Simplify M=A.

Redundancy from the propagation rule is useful, as the goal max(A,3,3) shows.
Only the propagation rule is applicable, and then the first rule:

max(A, 3, 3) �→Propagate max(A,3,3) ∧ A≤3 �→Simplify A≤3.

(The constraint 3=3 is simplified away by the built-in constraint solver.)

138 T. Frühwirth

2.3 Well-Behavedness: Termination and Confluence

A CHR program is well-behaved if it is terminating and confluent.

Definition 2. A CHR program is called terminating, if there are no infinite
computations.

For many existing CHR programs simple well-founded orderings are sufficient to
prove termination [Frü02]. Problems arise with non-trivial interactions between
simplification and propagation rules.

The confluence property of a program guarantees that any computation for
a goal results in the same final state no matter which of the applicable rules are
applied.

Definition 3. A CHR program is confluent if for all states S, S1, S2: If S �→∗

S1 and S �→∗ S2 then there exist states T1 and T2 such that S1 �→∗ T1 and
S2 �→∗ T2 and T1 and T2 are identical up to renaming of local variables and
logical equivalence of built-in constraints.

The papers [Abd97, AFM99] give a decidable, sufficient and necessary condition
for confluence for terminating CHR programs.

Example 3. The program for max from Example 1 is well-behaved. It is trivially
terminating, since the bodies of the rules do not contain any CHR constraints.
Thus confluence is decidable and can be shown to hold.

For example, to the state max(X,Y,Z) ∧ X=Y all three rules are applicable,
but in all cases, the final state is a built-in constraint logically equivalent to
X = Y ∧ Y = Z.

3 Rule Specialization

We are interested in any rule whose head could match (a part of) the given goal,
taking into account any possible context. Therefore we consider all rules that
have an overlap with the given goal. For an overlap, the head of the rule and
the goal must have at least one CHR constraint in common. This is achieved by
equating one or more constraints of the head and the goal.

We assume without loss of generality that rules (and goals) have disjoint
sets of variables (if necessary, their variables have been renamed apart), unless
otherwise noted.

In the following, meta-variables stand for (possibly empty) conjunctions of
constraints. Unless otherwise noted, the letters C and D stand for built-in con-
straints, H for CHR constraints of the head of a rule, B for arbitrary constraints
of the body of a rule, G for constraints in general.

We first specialize simplification rules.

Definition 4. Let G be a goal. Without loss of generality (w.l.o.g.), G can be
written as

G1 ∧G2 ∧D,

Specialization of Concurrent Guarded Multi-set Transformation Rules 139

where G1 and G2 are CHR constraints and D are built-in constraints.
Let R be a simplification rule

H1 ∧H2 ⇔ C B.

Then a specialization of the simplification rule R with regard to the goal G is the
simplification rule

H1 ∧H2 ∧G2 ⇔ H1=G1 ∧ C ∧D B ∧G2,

provided G1 and H1 are non-empty conjunctions and CT |= ∃(H1=G1∧C ∧D).

H1=G1 defines the overlap of the goal with the head of the rule. (G1 and
H1 are non-empty conjunctions, so that trivial overlaps are avoided.) G2, the
remainder of the goal G, occurs in both head and body of the specialized rule,
since it will not be changed by the rule. The condition CT |= ∃(H1=G1∧C∧D)
ensures that the specialized rule is not trivial. (With an unsatisfiable guard a
rule is never applicable).

Example 4. Let G be the goal

max(A, B, C) ∧ A ≥ B

Of course, this goal can be unfolded with the second rule of the program defining
max (from Example 1), but for the sake of a simple example, let us specialize the
first rule with it. Let R be the rule

max(X, Y, Z) ⇔ X ≤ Y Z=Y

We have a complete overlap with max, i.e.

G1 = max(A, B, C), G2 = true, D = (A ≥ B),
H1 = max(X, Y, Z),H2 = true, C = (X ≤ Y), B = (Z=Y).

The resulting specialized rule is:

max(X, Y, Z) ∧ true ∧ true ⇔ max(X, Y, Z)=max(A, B, C) ∧ X ≤ Y ∧ A ≥ B Z=Y∧
true

After removal of redundant true constraints and after propagation and simpli-
fication of variable equalities and other built-in constraints, the above rule can
be written as:

max(X, Y, Z) ⇔ X=Y Z=Y.

The conditional answer that we get from this rule reads as:

Given G, if A=B then C=B.

We now specialize propagation rules.

140 T. Frühwirth

Definition 5. Let G be a goal of the form

G1 ∧G2 ∧D,

where G1 and G2 are CHR constraints and D are built-in constraints.
Let R be a propagation rule

H1 ∧H2 ⇒ C B.

Then a specialization of the propagation rule R with regard to the goal G is the
propagation rule

H1 ∧H2 ∧G2 ⇒ H1=G1 ∧ C ∧D B,

provided G1 and H1 are non-empty conjunctions and CT |= ∃(H1=G1∧C ∧D).

In the propagation rule, we do not have to add the remainder G2 of the goal to
the body as in the case of a simplification rule, since it will not be removed from
the head.

Example 5. Let G be the goal

max(A, B, C) ∧ A ≥ B.

Let R be the propagation rule

max(X, Y, Z) ⇒ X ≤ Z ∧ Y ≤ Z.

The complete overlap with max is

G1 = max(A, B, C), G2 = true, D = (A ≥ B),
H1 = max(X, Y, Z),H2 = true, C = true, B = (X ≤ Z ∧ Y ≤ Z).

The specialized rule is

max(X, Y, Z) ∧ true ∧ true ⇒ max(X, Y, Z)=max(A, B, C) ∧ true ∧ A ≥ B
X ≤ Z ∧ Y ≤ Z ∧ true

After simplification of built-in constraints, the rule can be written as

max(X, Y, Z) ⇒ Y ≤ X X ≤ Z.

In practice, we may introduce a new definition for the goal G, say gmax, and
thus write the above rule as

gmax(A, B, C) ⇒ A ≤ C.

More examples can be found in Section 5.

Specialization of Concurrent Guarded Multi-set Transformation Rules 141

Remarks. If a goal is not specializable with any rule of the program, a program-
ming error is likely. (The CHR constraints of the goal are either not defined or
too specific.)

There are some interesting special cases of the above transformation: If we
know that at run-time, the goal will not occur in any context with additional
(CHR) constraints, we let H2 be the empty conjunction. If in addition, G2 is
empty, we only specialize with rules whose heads overlap completely with the
given goal.

A most general goal G = c(X1, . . . , Xn), where Xi (0 ≤ i ≤ n) are pairwise
distinct variables, will return all rules that contain the constraint symbol c with
arity n in their heads as a result of specialization.

4 Redundant Rules for Correctness

We show that the transformed rules are redundant in the program from which
they derive. Hence they cannot change the operational semantics of the program.
This result will establish correctness of the rule specialization transformation.
We use a strict notion of correctness, where the observables are complete states
(not only built-in constraints as usual in CC languages). We also show that
specialized rules preserve termination and confluence (well-behavedness).

In this paper, we do not address the question whether original rules can be
removed from the program once specialized rules are added. At the current state
of research, we would like to refer to the papers [AF04] in which techniques to
detect redundant rules in a program is described.

We start with a slightly more general definition of specialized rules than the
ones derived in the previous section. Then we define redundant rules.

Definition 6. A rule R′ is special(ized) in a CHR program P iff P contains
another rule of the form

H (C B where (∈ { ⇔ , ⇒ }.

and R′ is of the form

H ∧G(C ∧D B ∧G if (= ⇔ ,

H ∧G(C ∧D B if (= ⇒ ,

provided the variables in the added goals G and D are either new or occur in H.

In [AF04] rule redundancy is defined in terms of finite computations.

Definition 7. A rule R is redundant in a CHR program P iff for all states S:

If S �→∗
P S1 then S �→∗

P\{R} S2,

where S1 and S2 are final states and S1 and S2 are identical up to renaming of
local variables and logical equivalence of built-in constraints.

142 T. Frühwirth

We need some statements about preservation of well-behavedness under ad-
dition and removal of redundant rules.

The addition of rules to a CHR program cannot inhibit computations.

Lemma 1. Given a CHR program P and a rule R. For all states S and S′: If
S �→∗

P S′ then S �→∗
P∪{R} S′.

Proof. This is a direct consequence of the operational semantics of CHR. In a
computation step, one may apply any of the applicable rules. So it suffices to
ignore the newly added rule R to reproduce all computations of the original
program without R.

The lemma also means that the removal of rules from a CHR program cannot
introduce new computations.

From the above Lemma 1 the following two corollaries are immediate conse-
quences.

Corollary 1. Removal of a redundant rule preserves termination and confluence
of the program.

Proof. The claim holds since all computations are finite in a terminating program
and since removal of a rule cannot introduce more computations.

Removal preserves confluence by definition of redundant rules, because a
redundant rule could have only introduced computations that are also possible
without it.

Corollary 2. Addition of a redundant rule preserves confluence, but may de-
stroy termination.

Proof. Addition of a redundant rule preserves confluence by definition, because
a redundant rule only has finite computations that are also possible without it.

For termination, a counterexample suffices. Consider adding p(X) ⇔ p(X)
to a program that defines p. Every finite computation with the new rule will be
redundant, but there are obviously also infinite computations possible with the
new rule.

In order to arrive at our desired correctness result, we show that special rules
are redundant rules. For the proof, we need the following three lemmata from
[AF99].

Lemma 2. A computation can be repeated in any larger context, i.e. with states
in which built-in and CHR constraints have been added.

If G �→∗ G′ then (G ∧H) �→∗ (G′ ∧H).

Lemma 3. A computation can be repeated in a state where redundant built-in
constraints have been removed. Let CT |= ∀ (D → C).

If (H ∧ C ∧D ∧G) �→∗ S then (H ∧D ∧G) �→∗ S.

Specialization of Concurrent Guarded Multi-set Transformation Rules 143

Lemma 4. A computation can be repeated in a state where variables have been
instantiated. Let H ′ and H be CHR constraints without common variables.

If (H ∧H=H ′ ∧ C) �→∗
P S then (H ′ ∧ C[H=H ′]) �→∗

P S,

where C[H=H ′] denotes the substitution of the variables in C which also occur
in H as prescribed by the syntactic equality H=H ′.

We are now ready to prove that special rules are special redundant rules.

Theorem 1. Special rules are redundant rules.

Proof. By contradiction. We try to find a computation in a given CHR pro-
gram P that is possible with the special rule R′ but not possible without it
(the program P still contains R). W.l.o.g. we consider single computation steps
S′ �→{R′} S′

1. We got to show that then S′ �→{R} S1 is always possible and S′
1

and S1 are equivalent.
Consider the case where R′ and R are simplification rules. Let R of the form

H ⇔ C B

Let R′ be a special rule of R of the form

H ∧G⇔ C ∧D B ∧G

(Note that H, C and B are identical in both rules.)
Consider any state S′ with S′ �→{R′} S′

1. Since R′ is applicable, S′ must be
of the form

H ′ ∧G′ ∧G′′ ∧D′,

where CT |= ∀(D′ → H=H ′ ∧G=G′ ∧C ∧D), and S′
1 must be of the form

B ∧G ∧G′′ ∧H=H ′ ∧G=G′ ∧C ∧D ∧D′.

But then a very similar computation step is possible with R, since CT |=
∀(H=H ′ ∧ G=G′ ∧ C ∧ D) → H=H ′ ∧ C), the applicability condition CT |=
∀(D′ → H=H ′ ∧C) is fulfilled, and consequently S1 is of the form

B ∧G′ ∧G′′ ∧H=H ′ ∧C ∧D′.

We now show that the two states S′
1 and S1 are the equivalent up to re-

naming of local variables and equivalence of built-in constraints. More precisely,
we are interested in operational equivalence of states: Given the program P , all
computations with S′

1 as initial state are also possible with S1 as initial state
and vice versa.

Since S′
1 strictly contains S1, we know by Lemma 2 that all computations

with S1 are also possible with S′
1.

We still have to show that S′
1 does not admit more computations than S1.

We transform S′
1 into S1 while preserving logical and operational equivalence of

states.

144 T. Frühwirth

Since CT |= ∀(D′ → D) as a consequence of the fulfilled rule applicability
condition, we can remove D from state S′

1 according to Lemma 3.
Finally, we apply Lemma 4 and compute S′

1[G=G′]. The substitution affects
the variables in G and their occurences in other subconjunctions of the state S′

1

that stem from the rule. Clearly, G[G=G′] = G′. Also, H ′, G′′ and D′ remain
unaffected, since they are subconjunctions from the goal that cannot have any
variables in common with the rule from which G stems. Finally, (H=H ′)[G=G′]
can be left as (H=H ′) since the fulfilled applicability condition of R′, CT |=
∀(D′ → H=H ′ ∧G=G′ ∧C ∧D), implies that a variable common to H and G
must be equated to the same term in both equations H=H ′ and G=G′. Since by
definition of special rules, if G contains variables from the rule, they must also
occur in H, the subconjunction C is not affected either. So the overall result is
the state:

B ∧G′ ∧G′′ ∧H=H ′ ∧C ∧D′.

We have successfully transformed S′
1 into S1. Hence there cannot exist a compu-

tation with R′ that is not possible with R, i.e. the special rule R′ is redundant
in the program P that contains the rule R.

The proof for propagation rules is analogous.

Corollary 3. The addition and removal of special rules to a program preserves
its confluence.

Proof. Obvious, since special rules are redundant rules by Theorem 1 and Corol-
laries 1 and 2 for redundant rules.

Theorem 2. The addition and removal of special rules to a program preserves
its termination.

Proof. Since special rules are redundant rules by Theorem 1, their removal pre-
serves termination by Corollary 1.

We show that the addition of special rules preserves termination by contradic-
tion. In an infinite computation, the special rule must be applied infinitely often,
since any sub-computation between the applications of the special rule must be
finite, since the program without addition of the special rule is terminating.

The proof of Theorem 1 showed, that each computation step, where the spe-
cial rules is applied, can be mimicked by exactly one computation steps without
the special rule. But then the complete computation can be mimicked by appli-
cations of rules of the original program. Since the program was terminating, this
computation cannot be infinite.

5 More Examples

In this section, we use the concrete syntax of CHR implementations in Prolog
instead of the abstract syntax presented so far. The reason for this is that we have

Specialization of Concurrent Guarded Multi-set Transformation Rules 145

transformed the following programs in that setting with a first implementation
of rule specialization.

Recall the program for max(X,Y,Z) from Example 1.

max(X,Y,Z) <=> X=<Y | Z=Y.
max(X,Y,Z) <=> Y=<X | Z=X.
max(X,Y,Z) ==> X=<Z, Y=<Z.

Even though we did not adress unfolding of rules and simplification of built-
in constraints in rules in this paper for space reasons, we will use these program
manipulations in the following examples in a mild way in order to illustrate the
usefulness of rule specialization.

Unfolding basically means to replace the body of a rule by the result of a
computation starting with the guard and body of the rule. Note that in the case
of propagation rules, we also add the head of the rule to the initial state of the
computation (here the technical term “unfolding” turns into a misnomer). Since
we assume well-behaved programs, unfolding will terminate and it suffices to
consider any one computation because of confluence. Built-in constraint simpli-
fication basically replaces built-in constraints of the guard and body by simpler
ones.

In the examples, we will derive all specialized rules for a given goal. However,
we will not bother to derive specialized rules that are equivalent (up to reordering
of head constraints and variable renaming) to other already derived specialized
rules.

Example 6. Let the goal for specialization be:

max(X,Y,Z), max(Y,X,Z)

Specialization with the first conjunct of the goal, max(X,Y,Z) results in the
specialized rules:

max(X,Y,Z), max(Y,X,Z) <=> X=<Y | Z=Y, max(Y,X,Z).
max(X,Y,Z), max(Y,X,Z) <=> Y=<X | Z=X, max(Y,X,Z).
max(X,Y,Z), max(Y,X,Z) ==> X=<Z, Y=<Z.

Unfolding of max(Y,X,Z) in each of the specialized rules:

max(X,Y,Z), max(Y,X,Z) <=> X=<Y | Z=Y, Z=Y.
max(X,Y,Z), max(Y,X,Z) <=> Y=<X | Z=X, Z=X.
max(X,Y,Z), max(Y,X,Z) ==> X=<Z, Y=<Z, Y=<Z, X=<Z.

Trivial simplification of built-in constraint in the rule bodies:

max(X,Y,Z), max(Y,X,Z) <=> X=<Y | Z=Y.
max(X,Y,Z), max(Y,X,Z) <=> Y=<X | Z=X.
max(X,Y,Z), max(Y,X,Z) ==> X=<Z, Y=<Z.

When specializing with the second conjunct max(Y,X,Z), the same rules are
derived (up to permutation of head constraints). These rules are obviously re-
dundant.

146 T. Frühwirth

Comparing the original and the specialized rules, we see that one of the max
constraints in the goal is redundant, and, more generally, that max is commuta-
tive in its first two arguments. So an appropriate folding program transformation
would allow us to derive the rule:

max(X,Y,Z), max(Y,X,Z) <=> max(X,Y,Z).

Example 7. The goal to specialize is now:

max(X,Y,Z), max(X,Y,U)

Specialization with first conjunct max(X,Y,Z) of the goal:

max(X,Y,Z), max(X,Y,U) <=> X=<Y | Z=Y, max(X,Y,U).
max(X,Y,Z), max(X,Y,U) <=> Y=<X | Z=X, max(X,Y,U).
max(X,Y,Z), max(X,Y,U) ==> X=<Z, Y=<Z.

Specialization with the other conjunct of the goal leads to the same rules (up to
variable renaming). Unfolding of max(X,Y,U) in specialized rules:

max(X,Y,Z), max(X,Y,U) <=> X=<Y | Z=Y, U=Y.
max(X,Y,Z), max(X,Y,U) <=> Y=<X | Z=X, U=X.
max(X,Y,Z), max(X,Y,U) ==> X=<Z, Y=<Z, X=<U, Y=<U.

The built-in constraints in each simplification rules imply that Z=U. This reminds
us that the third argument of max is functionally dependent on the first two
arguments.

In the next example, we add a rule for functional dependency and specialize
it with regard to the goal of Example 6. Because the goal and the head of the
rule each have two constraints, there will be a more interesting overlap.

Example 8. The goal is:

max(X,Y,Z), max(Y,X,Z).

The functional dependency rule for max is:

max(X,Y,Z), max(X,Y,U) <=> max(X,Y,Z), Z=U.

Specialization with the functional dependency rule (again deriving the minimal
number of rules):

max(A,B,C), max(A,B,D), max(B,A,C) <=> max(A,B,C), C=D,max(B,A,C).
max(A,A,C), max(A,A,C) <=> max(A,A,C), C=C.

If the folded rule of Example 6 is available, we can also unfold and simplify the
first rule:

max(A,B,C), max(A,B,D), max(B,A,C) <=> C=D, max(A,B,C).
max(A,A,C), max(A,A,C) <=> A=C.

Specialization of Concurrent Guarded Multi-set Transformation Rules 147

6 Conclusions

The current work is a first, small step into considering program transforma-
tion for the constraint handling rule (CHR) language. This line of research is
motivated by two working hypothesis (as explained in the introduction):

– New applications of program transformation to problems such as verification,
constraint solver optimization and agent specialization.

– The suitability of CHR as a declarative, concurrent constraint-based pro-
gramming language with multi-headed rules for powerful program transfor-
mation techniques.

Here we have studied the specialization of rules with regard to a given goal.
We have shown that the correctness of this program transformation: Adding
and removing such specialized rules in a program does not change the program’s
operational semantics. Furthermore well-behavedness, i.e. termination and con-
fluence, is preserved by these operations.

The additional examples in the previous section give some hints of what
should be next:

– Unfolding and folding as well as rule simplifying program transformations
for CHR.

– A methodology (strategies) how to employ these transformations to improve
the performance of a program. In general, these strategies depend on the
intended application of the programn transformation. A particular and basic
question is to clarify which derived rules one should add and which original
rules one should remove.

Finally, and not surprisingly, future work also concerns the practical aspects
of improving the current preliminary ad-hoc implementation for rule specializa-
tion and applying it to larger examples.

References

[Abd97] Slim Abdennadher. Operational semantics and confluence of constraint
propagation rules. In Third International Conference on Principles and
Practice of Constraint Programming, CP97, LNCS 1330. Springer, 1997.

[AF99] Slim Abdennadher and Thom Frühwirth. Operational equivalence of CHR
programs and constraints. In Fifth International Conference on Principles
and Practice of Constraint Programming, CP99, LNCS 1713, pages 43–57.
Springer, 1999.

[AF04] Slim Abdennadher and Thom Frühwirth. Integration and optimization of
rule-based constraint solvers. In Maurice Bruynooghe, editor, Logic Based
Program Synthesis and Transformation - LOPSTR 2003, Revised Selected
Papers, LNCS. Springer, 2004.

[AFM99] Slim Abdennadher, Thom Frühwirth, and Holger Meuss. Confluence and
semantics of constraint simplification rules. Constraints Journal, 4(2),
1999.

148 T. Frühwirth

[DP99] Giorgio Delzanno and Andreas Podelski. Model checking in CLP. Lecture
Notes in Computer Science, 1579:223–239, 1999.

[EGM01] Sandro Etalle, Maurizio Gabbrielli, and Maria Chiara Meo. Transforma-
tions of CCP programs. ACM Trans. Program. Lang. Syst., 23(3):304–395,
2001.

[FA03] Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Pro-
gramming. Springer, 2003.

[FPP01] Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti. Verifying
CTL properties of infinite state systems by specializing constraint logic
programs. In M. Leuschel, A. Podelski, C.R. Ramakrishnan, and U. Ultes-
Nitsche, editors, ACM SIGPLAN International Workshop on Verification
and Computational Logic, pages 85–96, 2001.

[FPP04] Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti. Transforma-
tion rules for locally stratified constraint logic programs. 2004.

[Frü98] Thom Frühwirth. Theory and practice of constraint handling rules. Jour-
nal of Logic Programming, 37(1-3):95–138, 1998.

[Frü02] Thom Frühwirth. As time goes by: Automatic complexity analysis of sim-
plification rules. In 8th International Conference on Principles of Knowl-
edge Representation and Reasoning, Toulouse, France, 2002.

[MS97] Torben Mogensen and Peter Sestoft. Partial evaluation. In Allen Kent
and James G. Williams, editors, Encyclopedia of Computer Science and
Technology, volume 37, pages 247–279. 1997.

[PGGS98] Josep Puyol-Gruart, Llus Godo, and Carles Sierra. Specialisation calcu-
lus and communication. International Journal of Approximate Reasoning,
18(1/2):107–130, 1998.

[PP96] Alberto Pettorossi and Maurizio Proietti. Rules and strategies for trans-
forming functional and logic programs. ACM Comput. Surv., 28(2):360–
414, 1996.

[RKRR04] Abhik Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, and I. V.
Ramakrishnan. An unfold/fold transformation framework for definite logic
programs. ACM Trans. Program. Lang. Syst., 26(3):464–509, 2004.

[SR90] Vijay A. Saraswat and Martin Rinard. Concurrent constraint program-
ming. In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 232–245. ACM Press, 1990.

[UF88] Kazunori Ueda and Koichi Furukawa. Transformation rules for GHC pro-
grams. In Proc. Int. Conf. on Fifth Generation Computer Systems 1988
(FGCS’88), pages 582–591, 1988.

[Wal03] Toby Walsh. Constraint patterns. In F. Rossi, editor, 9th International
Conference on Principles and Practices of Constraint Programming (CP-
2003), volume 2833, pages 53–64. Springer LNCS, 2003.

Efficient Local Unfolding with Ancestor Stacks
for Full Prolog

G. Puebla , E. Albert , and M. Hermenegildo

1 School of Computer Science, Technical U. of Madrid
{german, herme}@fi.upm.es

2 School of Computer Science, Complutense U. of Madrid
elvira@sip.ucm.es

3 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New Mexico
herme@unm.edu

Abstract. The integration of powerful partial evaluation methods into
practical compilers for logic programs is still far from reality. This is re-
lated both to 1) efficiency issues and to 2) the complications of dealing
with practical programs. Regarding efficiency, the most successful un-
folding rules used nowadays are based on structural orders applied over
(covering) ancestors, i.e., a subsequence of the atoms selected during a
derivation. Unfortunately, maintaining the structure of the ancestor re-
lation during unfolding introduces significant overhead. We propose an
efficient, practical local unfolding rule based on the notion of covering an-
cestors which can be used in combination with any structural order and
allows a stack-based implementation without losing any opportunities for
specialization. Regarding the second issue, we propose assertion-based
techniques which allow our approach to deal with real programs that
include (Prolog) built-ins and external predicates in a very extensible
manner. Finally, we report on our implementation of these techniques
in a practical partial evaluator, embedded in a state of the art compiler
which uses global analysis extensively (the Ciao compiler and, specifi-
cally, its preprocessor CiaoPP). The performance analysis of the resulting
system shows that our techniques, in addition to dealing with practical
programs, are also significantly more efficient in time and somewhat more
efficient in memory than traditional tree-based implementations.

1 Introduction

In spite of the important research efforts in the area, the integration of Partial
Deduction (PD) [16, 8] methods into compilers seems to be still far from reality.
We believe that the general uptake of PD methods is being hindered by two fac-
tors: the relative inefficiency of the PD method, and the complications brought
about by the treatment of real programs. Indeed, the integration of powerful
strategies to the unfolding rule –like the use of structural orders combined with
the ancestor relation– can introduce a significant cost both in time and mem-
ory consumption of the specialization process. Regarding the treatment of real
programs which include external predicates, non-declarative features, etc, the

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 149–165, 2005.
Springer-Verlag Berlin Heidelberg 2005

1 2 31,

150 G. Puebla, E. Albert, and M. Hermenegildo

complications range from how to identify which predicates include these non-
declarative features (ad-hoc but difficult to maintain tables are often used in
practice for this purpose) to how to deal with such predicates during PD. A
main objective of this paper is to contribute to the uptake of PE techniques by
addressing some of these issues.

State-of-the-art partial evaluators integrate terminating unfolding rules for
local control based on structural orders, like homeomorphic embedding [14] which
can obtain very powerful optimizations. Moreover, they allow performing the or-
dering comparisons over subsequences of the full sequence of the selected atoms.
In particular, the use of ancestors for refining sequences of visited atoms, orig-
inally proposed in [4], greatly improves the specialization power of unfolding
while still guaranteeing termination and also reduces the length of the sequences
for which admissibility of new atoms has to be checked. Unfortunately, having
to maintain dependency information for the individual atoms in each deriva-
tion during the generation of SLD trees has turned out to introduce overheads
which seem to cancel out the theoretical efficiency gains expected. In order to
address this issue, we introduce a novel unfolding rule based on the notion of
covering ancestors which allows a very efficient implementation technique based
on stacks. Our technique can significantly reduce the overhead incurred by the
use of covering ancestors without losing any opportunities for specialization. We
outline as well a generalization that allows certain non-leftmost unfoldings with
the same assurances.

In order to deal with real programs that include (Prolog) built-ins and exter-
nal predicates, we rely on assertion-based techniques [20]. The use of assertions
provides extensibility in the sense that users and developers of partial evaluators
can deal with new external predicates during PE by just adding the proper asser-
tions to these predicates –without having to maintain ad-hoc tables or modifying
the partial evaluator itself. We report on our implementation of our technique
in a practical, state-of-the-art partial evaluator, embedded in a production com-
piler which uses assertions and global analysis extensively (the Ciao compiler [5]
and, specifically, its preprocessor CiaoPP[9]).

2 Background

We assume some basic knowledge on the terminology of logic programming. See
for example [17] for details.

2.1 Basics of Partial Deduction

Very briefly, an atom A is a syntactic construction of the form p(t1, . . . , tn),
where p/n, with n ≥ 0, is a predicate symbol and t1, . . . , tn are terms. The
function pred applied to atom A, i.e., pred(A), returns the predicate symbol
p/n for A. A clause is of the form H ← B where its head H is an atom and its
body B is a conjunction of atoms. A definite program is a finite set of clauses.
A goal (or query) is a conjunction of atoms. The concept of computation rule is
used to select an atom within a goal for its evaluation.

Efficient Local Unfolding with Ancestor Stacks for Full Prolog 151

Definition 1 (computation rule). A computation rule is a function R from
goals to atoms. Let G be a goal of the form ← A1, . . . , AR, . . . , Ak, k ≥ 1. If
R(G) =AR we say that AR is the selected atom in G.

The operational semantics of definite programs is based on derivations.

Definition 2 (derivation step). Let G be ← A1, . . . , AR, . . . , Ak. Let R be a
computation rule and let R(G) =AR. Let C = H ← B1, . . . , Bm be a renamed
apart clause in P . Then G′ is derived from G and C via R if the following
conditions hold:

θ = mgu(AR,H)
G′ is the goal ← θ(B1, . . . , Bm, A1, . . . , AR−1, AR+1, . . . , Ak)

The definition above differs from standard formulations (such as that in [17]) in
that the atoms newly introduced in G′ are not placed in the same position where
the selected atom AR used to be, but rather they are placed to the left of any
atom in G. For definite programs, this is correct since goals are conjunctions,
which enjoy the commutative property.

As customary, given a program P and a goal G, an SLD derivation for P∪{G}
consists of a possibly infinite sequence G = G0, G1, G2, . . . of goals, a sequence
C1, C2, . . . of properly renamed apart clauses of P , and a sequence θ1, θ2, . . . of
mgus such that each Gi+1 is derived from Gi and Ci+1 using θi+1. A derivation
step can be non-deterministic when AR unifies with several clauses in P , giving
rise to several possible SLD derivations for a given goal. Such SLD derivations can
be organized in SLD trees. A finite derivation G = G0, G1, G2, . . . , Gn is called
successful if Gn is empty. In that case θ = θ1θ2 . . . θn is called the computed
answer for goal G. Such a derivation is called failed if it is not possible to
perform a derivation step with Gn.

In order to compute a partial deduction (PD) [16], given an input program
and a set of atoms (goal), the first step consists in applying an unfolding rule to
compute finite (possibly incomplete) SLD trees for these atoms. Given an atom
A, an unfolding rule computes a set of finite SLD derivations D1, . . . , Dn (i.e., a
possibly incomplete SLD tree) of the form Di = A, . . . , Gi with computer answer
substitution θi for i = 1, . . . , n whose associated resultants are θi(A) ← Gi.
Therefore, this step returns the set of resultants, i.e., a program, associated to
the root-to-leaf derivations of these trees. We refer to [14] for details. In order
to ensure the local termination of the PD algorithm while producing useful
specializations, the unfolding rule must incorporate some non-trivial mechanism
to stop the construction of SLD trees. Nowadays, well-founded orderings (wfo)
[4, 18] and well-quasi orderings (wqo) [22, 13] are broadly used in the context
of on-line PE techniques (see, e.g., [8, 15, 22]). Formally, let ≤S be a wqo, we
denote by Admissible(A, (A1, . . . , An),≤S), with n ≥ 0, the truth value of the
expression ∀Ai, i ∈ {1, . . . , n} : A ≤S Ai. In wfo, it is sufficient to verify
that the selected atom is strictly smaller than the previous comparable one (if
one exists). Let < be a wfo, by Admissible(A, (A1, . . . , An), <), with n ≥ 0, we
denote the truth value of the expression A < An if n ≥ 1 and true if n = 0. We
will denote by structural order a wfo or a wqo (written as � to represent any

152 G. Puebla, E. Albert, and M. Hermenegildo

of them). Among the structural orders, well-quasi orderings (and homeomorphic
embedding [10] in particular) have proved to be very powerful in practice.

State-of-the-art unfolding rules allow performing ordering comparisons over
subsequences of the full sequence of the selected atoms of a derivation by organiz-
ing atoms in a proof tree [3], achieving further specialization in many cases while
still guaranteeing termination. The essence of the most advanced techniques is
based on the notion of covering ancestors [4].

Definition 3 (ancestor relation). Given a derivation step and AR, Bi, i =
1, . . . ,m as in Def. 2, we say that AR is the parent of the instance of Bi,
i = 1, . . . ,m, in the resolvent and in each subsequent goal where the instance
originating from Bi appears. The ancestor relation is the transitive closure of
the parent relation.

Usually, the ancestor test is only applied on comparable atoms, i.e., ancestor
atoms with the same predicate symbol. This corresponds to the original notion
of covering ancestors [4]. Given an atom A and a derivation D, we denote by
Ancestors(A,D) the sequence of ancestors of A in D as defined in Def. 3. It
captures the dependency relation implicit within a proof tree.

It has been proved [4] that any infinite derivation must have at least one
inadmissible covering ancestor sequence, i.e., a subsequence of the atoms selected
during a derivation. Therefore, it is sufficient to check the selected ordering
relation � over the covering ancestor subsequences in order to detect inadmissible
derivations. An SLD derivation is safe with respect to an order (wfo or wqo) if
all covering ancestor sequences of the selected atoms are admissible with respect
to that order.

3 The Usefulness of Ancestors

We now illustrate some of the ideas discussed so far and, specially, the relevance
of ancestor tracking, through an example. Our running example is the program
in Figure 1, which implements the well known quick-sort algorithm, “qsort”, us-
ing difference lists. Given an initial query of the form ←qsort(List,Result,Cont),
where List is a list of numbers, the algorithm returns in Result a sorted differ-
ence list which is a permutation of List and such that its continuation is Cont.
For example, for the query ← qsort([1, 1, 1], L, []), the program should compute
L=[1,1,1], constructing a finite SLD tree.

Consider now Fig. 2, which presents an incomplete SLD derivation for our
quick-sort program and the query ← qsort([1, 1, 1], R, []) using a leftmost unfold-
ing rule. For conciseness, predicates qsort and partition are abbreviated as qs

qsort([],R,R).

qsort([X|L],R,R2) :-

partition(L,X,L1,L2),

qsort(L2,R1,R2),

qsort(L1,R,[X|R1]).

partition([],_,[],[]).

partition([E|R],C,[E|Left1],Right) :-

E =< C, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]) :-

E > C, partition(R,C,Left,Right1).

Fig. 1. A quick-sort program

Efficient Local Unfolding with Ancestor Stacks for Full Prolog 153

1.qs([1, 1, 1], R, []){}

��
2.p([1, 1], 1, L1, L2){1},3.qs(L2, R1, []){1},4.qs(L1, R, [1|R1]){1}

{L1 �→[1|L]}��
5.1 =< 1{1,2},6.p([1], 1, L, L2){1,2},3.qs(L2, R1, []){1},4.qs([1|L], R, [1|R1]){1}

��

6. p([1],1,L,L2)
{1,2}

,3.qs(L2, R1, []){1},4.qs([1|L], R, [1|R1]){1}
{L �→[1|L′]}��

7.1 =< 1{1,2,6},8.p([], 1, L′, L2){1,2,6},3.qs(L2, R1, []){1},4.qs([1, 1|L′], R, [1|R1]){1}
��

8.p([], 1, L′, L2){1,2,6},3.qs(L2, R1, []){1},4.qs([1, 1|L′], R, [1|R1]){1}
{L′ �→[],L2 �→[]}��

3.qs([], R1, []){1},4.qs([1, 1], R, [1|R1]){1}
{R1′ �→[]}��

4.qs([1, 1], R, [1]){1}

��

9. p([1],1,L1’,L2’)
{1,4}

,10.qs(L2′, R1′, [1]){1,4},11.qs(L1′, R, [1|R1′]){1,4}
��

���
�
�
�
�
�
�
�
�
�
�
�

Fig. 2. Derivation with Ancestor Annotations

and p, respectively in the figure. Note that each atom is labeled with a number
(an identifier) for future reference1 and a superscript which contains the list of
ancestors of that atom. Let us assume that we use the homeomorphic embedding
order [13] as structural order. If we check admissibility w.r.t. the full sequence
of atoms, i.e., we do not use the ancestor relation, the derivation will stop when
atom number 9, i.e., p([1], 1, L′, L2′), is found for the second time. The reason is
that this atom is not strictly smaller than atom number 6 which was selected in
the third step, indeed, they are equal modulo renaming.2

This unfolding rule is too conservative, since the process can proceed further
without risking termination. The crucial point is that the execution of atom
number 9 does not depend on atom number 6 (and, actually, the unfolding
of 6 has been already completed when atom number 9 is being considered for
unfolding). Figure 3 shows the proof tree associated to this derivation where
nodes are labeled with the numbers assigned to each atom, instead of the atoms

1 By abuse of notation, we keep the same number for each atom throughout the
derivation although it may be further instantiated (and thus modified) in subsequent
steps. This will become useful for continuing the example later.

2 Let us note that the two calls to the builtin predicate =< which appear in the deriva-
tion can be executed since the arguments are properly instantiated. However, they
have not been considered in the admissibility test since these calls do not endanger
the termination of the derivation, as we will discuss in Sect. 5.

154 G. Puebla, E. Albert, and M. Hermenegildo

�

�

�

�
1

����������

�� ���������

�������

2

����
��

�
���

��
��

3
�

�

�

�
4

�� ����
�� ���

��
�

5 6

����
��

�
���

��
��

9 10 11

7 8

Fig. 3. Proof tree for the example

themselves. Note that, in order to decide whether or not to evaluate atom number
9, it is only necessary to check that it is strictly smaller than atoms 4 and 1,
i.e., than those which are its ancestors in the proof tree. On the other hand, and
as we saw before, if the full derivation is considered instead, as in Fig. 2, atom
9 will be compared also with atom 6 concluding imprecisely that the derivation
may not be safe.

Despite their obvious relevance, unfortunately the practical applicability of
unfolding rules based on the notion of covering ancestor is threatened by the
overhead introduced by the implementation of this notion. A naive implemen-
tation of the notion of ancestor keeps –for each atom– the list of its ancestors,
as it is depicted in Fig. 2. This implementation is relatively efficient in time
but presents a high overhead in memory consumption. Our experiments show
that the partial evaluator can run out of memory even for simple examples. A
more reasonable implementation maintains the proof tree as a global structure.
This greatly reduces memory consumption but the cost of traversing the tree for
retrieving the ancestors of each atom introduces a significant slowdown in the
PE process. We argue that our implementation technique is efficient in time and
space, overcoming the above limitations.

4 An Efficient Implementation for Local Unfolding

Our definition of local unfolding is based on the notion of ancestor depth.

Definition 4 (ancestor depth). Given an SLD derivation D = G0, . . . , Gm

with Gm =← A1, . . . , Ak, k ≥ 1, the ancestor depth of Ai for i = 1, . . . , k,
denoted depth(Ai, D) is the cardinality of the ancestor relation for Ai in D.

Intuitively, the ancestor depth of an atom in a goal is the depth at which this
atom is located in the proof tree associated to the derivation.

Definition 5 (local computation rule). A computation rule R is local if
∀D = G0, . . . , Gn such that Gi =← Ai1, . . . , Aimi

for i = 0, .., n, it holds that:
depth(R(Gi), D) ≥ depth(Aij , D) ∀j = 1, . . . ,mi

Intuitively, a computation rule is local if it always selects one of the atoms which
is deepest in the proof tree for the derivation. As a result, local computation rules

Efficient Local Unfolding with Ancestor Stacks for Full Prolog 155

traverse proof trees in a depth-first fashion, though not necessarily left to right
nor in any other fixed order. Thus, in principle, in order to implement a local
computation rule we need to record (part of) the derivation history (its proof
tree). Note that the computation rule used in most implementations of logic
programming languages, such as Prolog, always selects the leftmost atom. This
computation rule, often referred to as left-to-right computation rule, is clearly a
local computation rule. Selecting the leftmost atom in all goals guarantees that
the selected atom is of maximal depth within the proof tree as it is traversed in a
depth-first fashion –without the need of storing any history about the derivation.

An instrumental observation in our approach is that if the proof tree which
is used in order to capture the ancestor relation is traversed depth-first, left-
to-right, it can be interpreted as an activation tree [1]. In fact, the ancestor
subsequence in any point in time corresponds to the current control word [21]
by simply regarding selected atoms as procedure calls. The control word for
each execution state can be seen as the set of procedures whose execution has
started and is not yet completed, bearing a strong relation with the stack of
activation records which most compilers use as a run-time data structure. This
data structure takes normally the form of a stack, and this suggests one of
the central ideas of our approach: using stacks for storing ancestors. Another
important observation is that the control word idea does not need to be restricted
to leftmost computation and it works equally well as long as the computation
rule is local. Indeed, sibling atoms have the same ancestor depth, they can be
selected in any order and the notion of control word still applies. The advantages
of computing the control word instead of the proof tree are clear: the control word
corresponds to a single branch in the proof tree from the current selected atom
to all its ancestors in the proof tree. Thus, the control word offers advantages
both from memory and time consumption. The main difficulty for computing
control words is to determine exactly when each item in the control word should
be removed. To do this, we need to know when the computation of each predicate
is finished. In logic programming terminology this corresponds to determining
the success states for all predicates in the derivation. In principle, success states
are not observable in SLD resolution other than for the top-level query.

We now propose an easy-to-implement modification to SLD resolution as pre-
sented in Section 2 in which success states for all internal calls are observable
–and where the control word is available at each state. We will refer to this reso-
lution as SLD resolution with ancestor stacks, or ASLD for short. The proposed
modification involves 1) augmenting goals with an ancestor stack, which at each
stage of the computation contains the control word of the derivation, which cor-
responds to the ancestors of the next atom which will be selected for resolution,
and 2) adding pseudo-atoms to the goals used during resolution which mark a
scope whose purpose is twofold: 2.1) when a mark is leftmost in a goal, it indi-
cates that the current state corresponds to the success state for the call which
is now on top of the ancestor stack, i.e., the call is completed, and the atom
on top of the ancestor stack should be popped; 2.2) the atoms within the scope
of the leftmost mark have maximal ancestor depth and thus a local unfolding
strategy can be easily defined in the presence of these pseudo-atoms. We use the

156 G. Puebla, E. Albert, and M. Hermenegildo

pseudo-atom ↑ (read as “pop”) to indicate the end of a depth scope, i.e., after
it we move up in the proof tree. It is guaranteed not to clash with any existing
predicate name.

The following two definitions present the derivation rules in our ASLD se-
mantics. Now, a state S is a tuple of the form 〈G AS〉 where G is a goal and AS
is an ancestor stack (or stack for short). To handle such stacks, we will use the
usual stack operations: empty, which returns an empty stack, push(AS, Item),
which pushes Item onto the stack AS, and pop(AS), which pops an element from
AS. In addition, we will use the operation contents(AS), which returns the se-
quence of atoms contained in AS in the order in which they would be popped
from the stack AS and leaves AS unmodified.

Definition 6 (derive). Let G = ← A1, . . . , AR, . . . , Ak be a goal with A1 = ↑ .
Let S = 〈G AS〉 be a state and AS be a stack. Let � be a structural order.
Let R be a computation rule and let R(G) =AR with AR = ↑ . Let C = H ←
B1, . . . , Bm be a renamed apart clause. Then S′ = 〈G′ AS′〉 is derived from S
and C via R if the following conditions hold:

Admissible(AR, contents(AS), �)
θ = mgu(AR,H)

G′ is the goal ← θ(B1, . . . , Bm, ↑ , A1, . . . , AR−1, AR+1, . . . , Ak)
AS′ = push(AS, ren((AR)))

The derive rule behaves as the one in Definition 2 but in addition: i) the mark
↑ (“pop”) is added to the goal, and ii) a renamed apart copy of AR, denoted
ren(AR), is pushed onto the ancestor stack. As before, the derive rule is non-
deterministic if several clauses in P unify with the atom AR. However, in contrast
to Definition 2, this rule can only be applied if 1) the leftmost atom in the goal is
not a ↑ mark, and 2) the current selected atom AR together with its ancestors
does constitute an admissible sequence. If 1) holds but 2) does not, this derivation
is stopped and we refer to such a derivation as inadmissible.

Definition 7 (pop-derive). Let G = ← A1, . . . , Ak be a goal with A1 = ↑ .
Let S = 〈G AS〉 be a state and AS be a stack. Then S′ = 〈G′ AS′〉 with
G′ =← A2, . . . , Ak and AS′ = pop(AS) is pop-derived from S.

The pop-derive rule is used when the leftmost atom in the resolvent is a ↑
mark. Its effect is to eliminate from the ancestor stack the topmost atom, which
is guaranteed not to belong to the ancestors of any selected atom in any possible
continuation of this derivation.

Computation for a query G starts from the state S0 = 〈G empty〉. Given
a non-empty derivation D, we denote by curr goal(D) and curr ancestors(D)
the goal and the stack in the last state in D, respectively. At each step of a
derivation D at most one rule, either derive or pop-derive, can be applied
depending on whether the first atom in curr goal(D) is a mark ↑ or not.

Example 1. Fig. 4 illustrates the ASLD derivation corresponding to the deriva-
tion with explicit ancestor annotations of Fig. 2. Sometimes, rather than writing

Efficient Local Unfolding with Ancestor Stacks for Full Prolog 157

〈{qs([1, 1, 1], R, [])} []〉
derive��

〈{2,3,4, ↑ } [qsort([1, 1, 1], R, [])]〉
derive��

〈{5,6, ↑ ,3,4, ↑ } [part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
external−derive��

〈{6, ↑ ,3,4, ↑ } [part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])〉]
derive��

〈{7,8, ↑ , ↑ ,3,4, ↑ } [part([1], 1, L, L2), part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
external−derive��

〈{8, ↑ , ↑ ,3,4, ↑ } [part([1], 1, L, L2), part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
derive,pop−derive��

〈{ ↑ , ↑ ,3,4, ↑ } [part([1], 1, L, L2), part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
pop−derive��

〈{ ↑ ,3,4, ↑ } [part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
pop−derive��

〈{3,4, ↑ } [qsort([1, 1, 1], R, [])]〉
derive,pop−derive��

〈{4, ↑ } [qsort([1, 1, 1], R, [])]〉
derive��

〈{part([1], 1, L1′, L2′),10,11, ↑ , ↑ } [qsort([1, 1], R, [1]), qsort([1, 1, 1], R, [])]〉

Fig. 4. ASLD Derivation for the example

the atoms themselves, we use the same numbers assigned to the corresponding
atoms in Fig. 2. Each step has been appropriately labeled with the applied
derivation rule. Although rule external-derive has not been presented yet, we
can just assume that the code for the external predicate =< is available and has
the expected behavior.

It should be noted that, in the last state, the stack contains exactly the
ancestors of partition([1],1,L1’,L2’), i.e., the atoms 4 and 1, since the
previous calls to partition have already finished and thus their correspond-
ing atoms have been popped off the stack. Thus, the admissibility test for
partition([1],1,L1’,L2’) succeeds, and unfolding can proceed further with-
out risking termination. Note that derive steps w.r.t. a clause which is a fact
are always followed by a pop-derive and thus they are optimized in the figure
(and in the implementation, described in Section 6) by not pushing the selected
atom AR onto the stack and not including a ↑ mark into the goal which would
immediately pop AR from the stack.

Finally, since the goals obtained by ASLD resolution may contain atoms of the
form ↑ , resultants are cleaned up before being transferred to the global control

158 G. Puebla, E. Albert, and M. Hermenegildo

level or during the code generation phase by simply eliminating all atoms of the
form ↑ .

It is easy to see that for each ASLD derivation DS there is a corresponding
SLD derivation D with the same computed answer substitution and the same
goal without the ↑ atoms. Such SLD derivation is the one obtained by per-
forming the same derive steps (with exactly the same clauses) using the same
computation rule and by ignoring the pop-derive steps since goals in SLD reso-
lution do not contain ↑ atoms. We will use simplify(DS) = D to denote that
D is the SLD derivation which corresponds to DS .

We would now like to impose a condition on the computation rule which
allows ensuring that the contents of the stack are precisely the ancestors of the
atom to be selected.

Definition 8 (depth-preserving). A computation rule R is depth-preserving
if for each non-empty goal G = ← A1, . . . , Ak with A1 = ↑ , R(G) = AR and
↑ /∈ {A1, . . . , AR}.

Intuitively, a depth-preserving computation rule always returns an atom which
is strictly to the left of the first (leftmost) ↑ mark. Note that ↑ is used to
separate groups of atoms which are at different depth in the proof tree. Thus, the
notion of depth-preserving computation rules in ASLD resolution is equivalent
to that of local computation rules in SLD resolution.

Proposition 1 (ancestor stack). Let DS be an ASLD derivation for initial
query G in program P via a depth-preserving computation rule. Let D be an SLD
derivation such that simplify(DS) = D. Let curr goal(DS) = A1, . . . , An, ↑
, . . . with Ai = ↑ for i = 1, . . . , n. Let curr ancestors(DS) = AS. Then,
contents(AS) = Ancestors(Ai, D) for i = 1, . . . , n.

The next theorem guarantees that we do not lose any specialization opportuni-
ties by using our stack-based implementation for ancestors instead of the more
complex tree-based implementation, i.e., our proposed semantics will not stop
“too early”. It is a consequence of the above proposition and the results in [4].

Theorem 1 (accuracy). Let D be an SLD derivation for query G in a program
P via a local computation rule. Let � be a structural order. If the derivation D
is safe w.r.t � then there exists an ASLD derivation DS for G and P via a
depth-preserving computation rule such that simplify(DS) = D.

Note that since our semantics disables performing any further steps as soon
as inadmissible sequences are detected, not all local SLD derivations have a
corresponding ASLD derivation. However, if a local SLD derivation is safe, then
its corresponding DS derivation can be found.

It is interesting to note that we can allow more flexible computation rules which
are not necessarily depth-preserving while still ensuring termination. For instance,
consider state 〈A1, . . . , An, ↑ , AR, . . . [P1|P]〉 with ↑ /∈ {A1, . . . , An} and a non
depth-preserving computation rule which selects the atomAR to the right of the ↑
mark. Then, rule derive will check admissibility of AR w.r.t. all atoms in the stack
[P1|P]. However, the topmost atom P1 is an ancestor only of the atoms Ai to the

Efficient Local Unfolding with Ancestor Stacks for Full Prolog 159

left of AR but it is not an ancestor of AR. The more ↑ marks the computation rule
jumps over to select an atom, the more atoms which do not belong to the ancestors
of the selected atom will be in the stack, thus, the more accuracy and efficiency we
lose. In any case, the stack will always be an over-approximation of the actual set
of ancestors of AR.

In principle, our local unfolding rule based on ancestor stacks can be used
within any PD framework, including Conjunctive Partial Deduction (CPD). It
should be noted that some CPD examples may require the use of an unfolding
rule which is not depth-preserving to obtain the optimal specialization. As we
discuss above, we cannot ensure accuracy results in these cases but in turn the
use of local unfolding will clearly improve the efficiency of the PD process.

5 Assertion-Based Unfolding for External Predicates

Most of real-life Prolog programs use predicates which are not defined in the
program (module) being developed. We will refer to such predicates as external.
Examples of external predicates are the traditional “built-in” predicates such as
arithmetic operations (e.g., is/2, <, =<, etc.) or basic input/output facilities. We
will also consider as external predicates those defined in a different module, pred-
icates written in another language, etc. This section deals with the difficulties
which such external predicates pose during PD.

When an atom A, such that pred(A) = p/n is an external predicate, is se-
lected during PD, it is not possible to apply the derive rule in Definition 2 due
to several reasons. First, we may not have the code defining p/n and, even if
we have it, the derivation step may introduce in the residual program calls to
predicates which are private to the module M where p/n is defined. In spite of
this, if the executable code for the external predicate p/n is available, and under
certain conditions, it can be possible to fully evaluate calls to external predi-
cates at specialization time. We use Exec(Sys,M,A) to denote the execution
of atom A on a logic programming system Sys (e.g., Ciao or Sicstus) in which
the module M where the external predicate p/n is defined has been loaded.
In the case of logic programs, Exec(Sys,M,A) can return zero, one, or several
computed answers for M ∪ A and then execution can either terminate or loop.
We will use substitution sequences [6] to represent the outcome of the execution
of external predicates. A substitution sequence is either a finite sequence of the
form 〈θ1, . . . , θn〉, n ≥ 0, or an incomplete sequence of the form 〈θ1, . . . , θn,⊥〉,
n ≥ 0, or an infinite sequence 〈θ1, . . . , θi, . . .〉, i ∈ IN∗, where IN∗ is the set of
positive natural numbers and ⊥ indicates that the execution loops. We say that
an execution universally terminates if Exec(Sys,M,A) = 〈θ1, . . . , θn〉, n ≥ 0.

In addition to producing substitution sequences, it can be the case that the
execution of atoms for (external) predicates produces other outcomes such as
side-effects, errors, and exceptions. Note that this precludes the evaluation of
such atoms to be performed at PE time, since those effects need to be per-
formed at run-time. We say that an expression is evaluable when its execution
1) universally terminates, 2) it does not produce side-effects, 3) it is sufficiently
instantiated to be executed, 4) it does not issue errors and 5) it does not gener-

160 G. Puebla, E. Albert, and M. Hermenegildo

ate exceptions. Clearly, some of the above properties are not computable (e.g.,
termination is undecidable in the general case). However, it is often possible to
determine some sufficient conditions (SC) which are decidable and ensure that,
if an atom A satisfies such conditions, then A is evaluable. Intuitively, SC can
be thought of as a traditional precondition which ensures a certain behaviour of
the execution of a procedure provided they are satisfied. To formalize this, we
propose to use the “computational assertions” which are part of the assertion
language [20] of CiaoPP in order to express that a certain predicate is evaluable
under certain conditions. The following definition introduces the notion of an
eval annotation as (part of) a computational assertion. We use id to denote the
empty substitution, i.e., ∀ t , id(t) = t.

Definition 9 (eval annotations). Let p/n be an external predicate defined in
module M . The assertion :- trust comp p(X1,...,Xn) : SC + eval. in the
code for M is a correct eval annotation for predicate p/n in a logic programming
system Sys if, ∀θ, the expression θ(SC) is evaluable, and

if Exec(Sys,M, θ(SC)) = 〈id〉 then θ(p(X1, ...,Xn)) is evaluable

One of the advantages of using this kind of assertion is that it makes it possible
to deal with new external predicates (e.g., written in other languages) in user
programs or in the system libraries without having to modify the partial evalu-
ator itself. Also, the fact that the assertions are co-located with the actual code
defining the external predicate, i.e., in the module M (as opposed to being in
a large table inside the PD system) makes it more difficult for the assertion to
be left out of sync when a modification is made to the external predicate. We
believe this to be very important to the maintainability of a real application or
system library.

Example 2. The computational assertions in CiaoPP for the builtin predicate ≤
include, among others, the following one:

:- trust comp A =< B : (arithexpr(A), arithexpr(B)) + eval.

which states that if predicate =</2 is called with both arguments instantiated to
a term of type arithexpr, then the call is evaluable. The type arithexpr cor-
responds to arithmetic expressions which, as expected, are built out of numbers
and the usual arithmetic operators. The type arithexpr is expressed in Ciao as
a unary regular logic program. This allows using the underlying Ciao system in
order to effectively decide whether a term is an arithexpr or not.

The following definition extends our ASLD semantics by providing a new rule,
external-derive, for evaluating calls to external predicates. Given a sequence
of substitutions 〈θ1, . . . , θn〉, we define Subst(〈θ1, . . . , θn〉) = {θ1, . . . , θn}.

Definition 10 (external-derive). Let Sys be a logic programming system. Let
G = ← A1, . . . , AR, . . . , Ak be a goal. Let S = 〈G AS〉 be a state and AS
a stack. Let R be a computation rule such that R(G) =AR with pred(AR) =
p/n an external predicate from module M . Let C be a renamed apart asser-
tion :- trust comp p(X1,...,Xn) : SC + eval. Then, S′ = 〈G′ AS′〉 is ex-
ternal-derived from S and C via R in Sys if: 1) σ = mgu(AR, p(X1, ...,Xn)),

Efficient Local Unfolding with Ancestor Stacks for Full Prolog 161

2) Exec(Sys,M, σ(SC)) = 〈id〉, 3) θ ∈ Subst(Exec(Sys,M,AR)), 4) G′ is the
goal θ(A1, . . . , AR−1, AR+1, . . . , Ak), 5)AS′ = AS.

Notice that, since after computing Exec(Sys,M,AR) the computation of AR is
finished, there is no need to push (a copy of) AR into AS and the ancestor stack
is not modified by the external-derive rule. This rule can be nondeterministic
if the substitution sequence for the selected atom AR contains more than one
element, i.e., the execution of external predicates is not restricted to atoms which
are deterministic. The fact thatAR is evaluable implies universal termination. This
in turn guarantees that in any ASLD tree, given a node S in which an external
atom has been selected for further resolution, only a finite number of descendants
exist for S and they can be obtained in finite time.

Example 3. Consider the assertion in Example 2 and the atoms 5 and 7, which
are of the form 1=<1, in the ASLD derivation of Fig. 2. Both atoms can be
evaluated because Exec(ciao, arithmetic, (arithexpr(1), arithexpr(1))) = 〈id〉.
This is a sufficient condition for Exec(ciao, arithmetic, (1 =< 1)) to be evaluable.
Its execution returns Exec(ciao, arithmetic, (1 =< 1)) = 〈id〉.

6 Experimental Results

We have implemented in our PD system the unfolding rule we propose, together
with other variations in order to evaluate the efficiency of our proposal. Our PD
system has been integrated in a practical state of the art compiler which uses
global analysis extensively: the CiaoPP preprocessor [9]. For the tests, the whole
system has been compiled using Ciao 1.11#275 [5], with the bytecode generation
option. All of our experiments have been performed on a Pentium 4 at 2.4GHz
and 512MB RAM running GNU Linux RH9.0. The Linux kernel used is 2.4.25.

The results in terms of execution time are presented in Table 1. The pro-
grams used as benchmarks are indicated in the Bench column. We have chosen

Table 1. Comparison of Proof Trees Vs.Ancestor Stacks (Execution Time)

Execution Times Relative Speed Up
Bench Relation Trees Stacks MEcce Relation Trees MEcce

advisor3 144 192 106 1240 1.36 1.81 11.70
nrev 80 mem 106490 15040 64970 ∞ 7.08 4.32
nrev 38 998 2804 806 4370 1.24 3.48 5.42
permute 7 mem 5226 2800 34680 ∞ 1.87 12.39
permute 6 476 614 336 3530 1.42 1.83 10.51
query 166 214 116 1290 1.43 1.84 11.12
qsort 80 mem 98514 8970 71870 ∞ 10.98 8.01
qsort 33 686 2432 454 4580 1.51 5.36 10.09
rev 80 984 1102 960 1400 1.02 1.15 1.46
zebra 1562 2276 994 186620 1.57 2.29 187.75

Overall mem 7.19 12.25

162 G. Puebla, E. Albert, and M. Hermenegildo

a number of classical programs for the analysis and PD of logic programs as
benchmarks. In order to factor out the cost of global control, we have used in
our experiments initial queries which can be fully unfolded using homeomorphic
embedding with ancestors. The program advisor3 is a variation of the advisor
program in the DPPD [12] library. The programs query and zebra are classical
benchmarks for program analysis. Programs qsort 80 and qsort 33 correspond
to the quick-sort program shown in the paper with pseudo-random lists of natu-
ral numbers of length 80 and 33 respectively. nrev 80 and nrev 38 correspond to
the well-known naive reverse with lists of 80 and 38 natural numbers. rev 80 is
a reverse program with linear complexity which uses an accumulator. The initial
query is, as before, a list of 80 natural numbers. Finally, permute is a permu-
tation program which uses a nondeterministic deletion predicate. It is partially
evaluated w.r.t. a list of 6 and 7 elements respectively. None of advisor3, query,
nor zebra can be fully unfolded using homeomorphic embedding over the full
sequence of selected atoms. Also, nrev and, as seen in the running example,
qsort are potentially not fully unfolded if the input lists contain repetitions un-
less ancestors are considered. In the table, the following group of columns show
execution time of the unfolding process with the different implementations of
unfolding:

Relation. We refer to an implementation where each atom in the resolvent is
annotated with the list of atoms which are in its ancestor relation, as done
in the example in Figure 2.

Trees. This column refers to the implementation where the ancestor relations
of the different atoms are organized in a proof tree.

Stacks. The column Stacks refers to our proposed implementation based on
ancestor stacks.

MEcce. We have also measured the time that it takes to process the same
benchmarks using Leuschel’s M-Ecce (modular Ecce [12]) system, compiled
with the same version of Ciao and in the same machine.

The last set of columns compare the relative measures of the different approaches
w.r.t. the Stacks algorithm. Finally, in the last row, labeled Overall, we sum-
marize the results for the different benchmarks using a weighted mean, which
places more importance on those benchmarks with relatively larger unfolding
figures. We use as weight for each program its actual unfolding time. We believe
that this weighted mean is more informative than the arithmetic mean, as, for
example, doubling the speed in which a large unfolding tree is computed is more
relevant than achieving this for small trees.

Let us explain the results in Table 1. Times are in milliseconds, measur-
ing runtime, and are computed as the arithmetic mean of five runs. Three
entries in the Relation column contain the value “mem”, instead of a num-
ber, to indicate that the PD system has run out of memory. For each of these
three cases, we have repeated the experiment with the largest possible initial
query that Relation can handle in our system before running out of mem-
ory. This explains that the three benchmarks are specialized w.r.t. two differ-
ent initial queries. As it can be seen in the column for relative speedups, Re-
lation is quite efficient in time for those benchmarks it can handle, though

Efficient Local Unfolding with Ancestor Stacks for Full Prolog 163

a bit slower than the one based on stacks. However, its memory consump-
tion is extremely high, which makes this implementation inadmissible in prac-
tice. Regarding column Trees, the implementation based on proof trees has a
good memory consumption but is slower than Relation due to the overhead
of traversing the tree for retrieving the ancestors of each atom. In compari-
son to M-ecce, the results provide evidence that our proof tree-based imple-
mentation is indeed comparable to state of the art systems, since the execu-
tion times are similar in some cases or even better in others. The last set of
columns compares the relative execution times of the different approaches w.r.t.
the Stacks algorithm which is the fastest in all cases. Indeed, Stacks is even
faster than the implementation based on explicitly storing all ancestors of all
atoms (Relation) while having a memory consumption comparable to (and in
fact, slightly better than) the implementation based on proof trees. The ac-
tual speedup ranges from 1.15 in the case of rev 80 to 10.98 in the case of
qsort 80. This variation is due to the different shapes which the proof trees
can have for the (derivations in the) SLD tree. In the case of rev, the speedup
is low since the SLD tree consists of a single derivation whose proof tree has
a single branch. Thus, in this case considering the ancestor sequence is indeed
equivalent to considering the whole sequence of selected atoms. But note that
this only happens for binary clauses. It is also worth noticing that the speedup
achieved by the Stacks implementation increases with the size of the SLD tree,
as can be seen in the three benchmarks which have been specialized w.r.t. dif-
ferent queries. The overall resulting speedup of our proposed unfolding rule
over other existing ones is significant: over 7 times faster than our tree-based
implementation.

We have also studied the memory required by the unfolding process (for lack
of space details are in [19]). As for the case of execution time, the Stacks
algorithm presents lower consumption than any other algorithm for all pro-
grams studied. The memory required by the Relation algorithm precludes
it from its practical usage. Regarding the Stacks algorithm, not only it is sig-
nificantly faster than the implementation based on trees. Also it provides a
relatively important reduction (1.18 overall, computed again using a weighted
mean) in memory consumption over Trees, which already has a good memory
usage.

Altogether, when the results of Table 1 and the memory figures are com-
bined, they provide evidence that our proposed techniques allow significant
speedups while at the same time requiring somewhat less memory than tree
based implementations and much better memory consumptions than implemen-
tations where the ancestor relation is directly computed. This suggests that our
techniques are indeed effective and can contribute to making PD a practical
tool.

As for future work, we plan to provide additional solutions for the prob-
lems involved in non-leftmost unfolding for programs with extra logical pred-
icates beyond those presented in the literature [11, 7, 2, 14]. In particular, the
intensive use of static analysis techniques in this context seems particularly
promising. In our case we plan to take advantage of the fact that our PD

164 G. Puebla, E. Albert, and M. Hermenegildo

system is integrated in CiaoPP which includes extensive program analysis
facilities.

Acknowledgments

The authors would like to thank the anonymous referees and the participants
of LOPSTR’04 for their useful comments. This work was funded in part by the
Information Society Technologies programme of the European Commission, Fu-
ture and Emerging Technologies under the IST-2001-38059 ASAP project and
by the Spanish Ministry of Science and Education under the MCYT TIC 2002-
0055 CUBICO project. Part of this work was performed during a research stay
of Elvira Albert and Germán Puebla at University of Roskilde supported by
respective grants from the Secretaŕıa de Estado de Educación y Universidades,
Spanish Ministry of Science and Education. Manuel Hermenegildo is also sup-
ported by the Prince of Asturias Chair in Information Science and Technology
at UNM.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers – Principles, Techniques and
Tools. Addison-Wesley, 1986.

2. E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for multi-
paradigm declarative languages. Journal of Functional and Logic Programming,
2002(1), 2002.

3. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

4. M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding
Infinite Unfolding during Partial Deduction. New Generation Computing, 1(11):47–
79, 1992.

5. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and
G. Puebla (Eds.). The Ciao System. Reference Manual (v1.10). Technical Report
CLIP3/97.1.10(04), School of Computer Science (UPM), August 2004. Available
at http://clip.dia.fi.upm.es/Software/Ciao/.

6. B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence Based Abstract In-
terpretation of Prolog. Theory and Practice of Logic Programming, 2(1):25–84,
2002.

7. S. Etalle, M. Gabbrielli, and E. Marchiori. A Transformation System for CLP
with Dynamic Scheduling and CCP. In Proc. of the ACM Sigplan PEPM’97,
pages 137–150. ACM Press, New York, 1997.

8. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88–98. ACM Press, 1993.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In Proc.
of SAS’03, pages 127–152. Springer LNCS 2694, 2003.

10. J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society, 95:210–225, 1960.

Efficient Local Unfolding with Ancestor Stacks for Full Prolog 165

11. Michael Leuschel. Partial evaluation of the “real thing”. Proceedings of LOP-
STR’94 and META’94, Lecture Notes in Computer Science 883, pages 122–137.
Springer-Verlag.

12. Michael Leuschel. The ecce partial deduction system and the dppd library of
benchmarks. Obtainable via http://www.ecs.soton.ac.uk/~mal, 1996-2002.

13. Michael Leuschel. On the power of homeomorphic embedding for online termina-
tion. In Giorgio Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503,
pages 230–245, Pisa, Italy, September 1998. Springer-Verlag.

14. Michael Leuschel and Maurice Bruynooghe. Logic program specialisation through
partial deduction: Control issues. Theory and Practice of Logic Programming, 2(4
& 5):461–515, July & September 2002.

15. Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalisation
and polyvariance in partial deduction of normal logic programs. ACM Transactions
on Programming Languages and Systems, 20(1):208–258, January 1998.

16. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11:217–242, 1991.

17. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-
tion, 1987.

18. B. Martens and D. De Schreye. Automatic finite unfolding using well-founded
measures. The Journal of Logic Programming, 28(2):89–146, August 1996.

19. G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with Ances-
tor Stacks for Full Prolog. Technical Report CLIP2/2005.0, Technical University
of Madrid, February 2005.

20. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pages 23–61. Springer LNCS 1870, 2000.

21. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages: Word
Language Grammar, volume 1. Springer-Verlag, 1997.

22. M.H. Sørensen and R. Glück. An Algorithm of Generalization in Positive Super-
compilation. In Proc. of ILPS’95, pages 465–479. The MIT Press, 1995.

Schema-Guided Synthesis of Imperative
Programs by Constraint Solving

Michael A. Colón�

Center for High Assurance Computer Systems,
Naval Research Laboratory,

Washington, D.C.
colon@itd.nrl.navy.mil

Abstract. We present a method for schema-guided synthesis of imper-
ative programs computing polynomial functions and their inverses. The
schemas of our approach contain parameters representing both fragments
of code and fragments of invariants, and they generate programs anno-
tated with loop invariants establishing partial correctness. Schema appli-
cation entails simultaneously instantiating the code parameters to poly-
nomials and the invariant parameters to systems of polynomial equali-
ties. By bounding the degrees of these polynomials and their number,
our method reduces schema instantiation to non-linear constraint solv-
ing, based on the theory of polynomial ideals. Although non-linear con-
straint solving is NP-hard, a solution can be generated automatically
when the resulting system contains few constraints. A specialization of
our method yields linear constraints by further restricting the form of the
invariants. This restriction improves the efficiency of constraint solving,
but may fail to synthesize programs derivable by the general method.

1 Introduction

Program synthesis is the process of generating a concrete implementation of a
program from an abstract specification of its behavior [8, 2]. Program synthesis
is also known as automatic programming and is a form of program transforma-
tion, i.e., the translation of programs written in one formalism to another. The
conventional wisdom is that a program transformation entails synthesis when it
introduces iterative or recursive constructs not manifest in the specification [9].
Deductive program synthesis is the synthesis of programs based on sound logical
reasoning, while inductive synthesis extrapolates program behavior from a set
of examples [8]. Deductive program synthesis comes in three forms: transforma-
tional, constructive, and schema-guided.

In transformational synthesis, a program is derived by applying a sequence
of transformations to an initial declarative specification, resulting in a final exe-
cutable implementation [18]. The principal difficulty with automating transfor-
mational synthesis is the enormous search space that results from a large number

� Supported by the Office of Naval Research.

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 166–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Schema-Guided Synthesis of Imperative Programs by Constraint Solving 167

in x : rational;

out y : integer;

local z : rational;

�1 : 〈y, z〉 := 〈0, 0〉;
�2 : {z = y2}

while 2y + z + 1 ≤ x do

�3 : 〈y, z〉 := 〈y + 1, 2y + z + 1〉;
�4 : halt

(a) Program

in x : rational;

out y : integer;

local z : rational;

�1 : 〈y, z〉 := 〈0, α〉;
�2 : {I}

while γ ≤ x do

�3 : 〈y, z〉 := 〈y + 1, β〉;
�4 : halt

(b) Template

Fig. 1. Square root by linear search

of transformation rules, which are usually of fine granularity. Thus, transforma-
tional synthesis tools often require human guidance. In constructive synthesis,
the problem is reduced to one of proving an existentially quantified formula in
a sufficiently constructive fragment of logic [14]. The program is then extracted
from the proof. Constructive synthesis trades the enormous space of potential
transformation rule applications for a seemingly larger space of inference rule
applications [8], and the principal difficulty with automating constructive syn-
thesis is the need to find proofs of the resulting formulas, which normally require
induction. For this reason, tools for automatic constructive synthesis wisely limit
themselves to generating loop-free programs [23].

A third approach to automatic programming is schema-guided synthesis [10].
A schema is a parameterized program capturing the commonalities among the
solutions to a family of related problems. Schema-guided synthesis involves se-
lecting one of a collection of available schemas and instantiating its parame-
ters to produce an implementation conforming to the specification. The prin-
cipal advantage of schema-guided synthesis is that a well-chosen collection of
domain-specific schemas can quickly guide the tool to a solution by pruning
away large portions of the space of potential implementations – portions nor-
mally explored by constructive and transformational methods. Its principal dis-
advantage is its incompleteness. The only synthesizable programs are those
which are instances of schemas appearing in the collection. This incomplete-
ness notwithstanding, the schema-guided approach is the basis of several syn-
thesis tools [21, 2].

Consider the program shown in Fig. 1(a), which computes the integer square
root y of a non-negative rational x, i.e., the largest integer whose square is less
than or equal to x. This program initializes y to zero, then repeatedly increments
y, provided the square of y + 1 does not exceed x. Note that all expressions
evaluated at run time are linear. As a result, this program can run on a machine
without a hardware multiplier, and it runs faster than the obvious approach of
computing y2 with each iteration on machines for which shifts and additions are
faster than multiplications. The correctness of the program depends crucially on
the invariant z = y2, which implies the equivalence of 2y + z + 1 and (y + 1)2.

168 M.A. Colón

Fig. 1(b) presents a parameterized program for function inversion by linear
search, with the invariant parameter I and the expression parameters α, β and γ.
The program of Fig. 1(a) can be derived from this template by instantiating I
to z = y2, α to 0 and instantiating both β and γ to 2y + z + 1. However,
not all instances of the template compute the integer square root of x. A correct
instance must ensure that γ is equivalent to (y+1)2 whenever the loop condition
is evaluated. This constraint can be met by instantiating I to an assertion which
entails the equivalence and is invariant at �2.

A program schema is a parameterized program together with constraints on
its instances guaranteeing correctness. The problem of finding expressions for the
parameters which satisfy the correctness constraints is known as schema instan-
tiation. We present a method for schema instantiation for imperative programs
computing polynomial functions and their inverses. Our method simultaneously
finds polynomials for the expression parameters and a system of polynomial
equalities to serve as the loop invariant. By placing a heuristic bound on the
degrees of the polynomials, as well as the number of equations appearing in the
invariant, our method reduces schema instantiation to non-linear constraint solv-
ing over the rationals, based on the theory of polynomial ideals. These constraints
are then solved using a constraint solver.

Although the constraints produced by our method are decidable, the high
complexity of non-linear constraint solving limits its applicability to schemas
with relatively few parameters. Hence, we present a specialization of our method
which restricts the form of the equalities appearing in generated invariants, in
addition to their degrees, thereby reducing instantiation to linear constraint
solving. While our specialized method is fast enough for practical application,
it may fail to synthesize programs which are derivable by our general method.
We have implemented both of these methods in Java and applied them to the
synthesis of several imperative programs.

2 Preliminaries

Let X = {x1, . . . , xn} be a finite set of variables. A state σ maps each variable to
a rational, and Σ denotes the set of all states. A state formula ϕ is a first-order
expression whose free variables belong to X. A state σ satisfies ϕ, denoted by
σ |= ϕ, precisely when ϕ holds in the model which interprets the variables of X
as in σ. A state formula is also known as an assertion or a condition.

A (binary) relation on Σ is a subset of Σ ×Σ. Each pair 〈σ, σ′〉 of a relation
consists of a prestate σ and a poststate σ′. A relation formula ρ is a first-order
expression whose free variables belong to X∪X ′, where the variables in X denote
the values in the prestate, and those in X ′ = {x′

1, . . . , x
′
n} denote values in the

poststate. A pair 〈σ, σ′〉 satisfies ρ, denoted by 〈σ, σ′〉 |= ρ, if ρ holds in the
model which interprets X as in the prestate σ and X ′ as in the poststate σ′. If
every pair which satisfies ρ1 also satisfies ρ2, then ρ1 entails ρ2, written ρ1 |= ρ2.
The primed version ϕ′ of a state formula is ϕ[X �→ X ′], where Ψ [X �→ W]
denotes the safe replacement in Ψ of the variables in X by the corresponding

Schema-Guided Synthesis of Imperative Programs by Constraint Solving 169

expressions in W . The composition ρ1 ◦ ρ2 of two relations is the set of all pairs
〈σ, σ′〉 such that 〈σ, σ̄〉 ∈ ρ1 and 〈σ̄, σ′〉 ∈ ρ2 for some intermediate state σ̄.

Although the programs we consider are written in a structured language
containing assignments, conditionals, and iteration, we define the semantics of
programs in terms of transition systems. A program P = 〈L, T , Li, Lf〉 con-
sists of a finite set of locations L; a finite set of transitions T , where each
τ ∈ T is a tuple 〈�, �′, ρ〉 consisting of a prelocation �, a postlocation �′, and
a relation ρ, called the transition relation; a subset Li ⊆ L of initial loca-
tions, and a subset Lf ⊆ L of final locations. A configuration 〈�, σ〉 is a loca-
tion paired with a state, and a computation is a potentially infinite sequence
〈�0, σ0〉

τ1→〈�1, σ1〉
τ2→ . . .

τn→〈�n, σn〉
τn+1→ . . . of configurations and transitions such

that for each i ≥ 1, τi = 〈�i−1, �i, ρ〉 with 〈σi−1, σi〉 |= ρ. A finite computa-
tion 〈�0, σ0〉

τ1→ . . .
τn→〈�n, σn〉 is proper if �0 ∈ Li and �n ∈ Lf. A specification

〈ϕ,ψ〉 consists of a precondition ϕ and a postcondition ψ. A program P satisfies
the specification 〈ϕ,ψ〉 iff for every proper computation 〈�0, σ0〉

τ1→ . . .
τn→〈�n, σn〉,

if σ0 |= ϕ then σn |= ψ.

Inductive Assertions

A path π = �0
τ1→�1 . . . �n−1

τn→�n
τn+1→ . . . of a program P is a potentially infinite

sequence of interleaved locations and transitions such that, for each i ≥ 1, �i−1

is the prelocation of τi, and �i is its postlocation. The path relation ρπ of a finite
path π is the composition of the transition relations along π. A cycle is a finite
path �0

τ1→ . . .
τn→�0 of P which begins and ends at the same location. A cut set

C is a subset of L containing at least one location from each cycle. A path is
�-free if it does not contain � or contains � only as its initial or final location,
and C-free if �-free for all � ∈ C.

An assertion I is invariant at location � given precondition ϕ, if I holds
whenever � is reached in every computation whose initial state satisfies ϕ. An
annotation A of program P is a partial function from locations to assertions. An
annotation is inductive given precondition ϕ if its domain is a cut set C such
that for all c1, c2 ∈ C, we have i) ϕ ∧ ρπ |= A(c1)′ for every C-free path π from
an initial location to c1 and ii) A(c1) ∧ ρπ |= A(c2)′ for every C-free path π from
c1 to c2. The first condition is known as initiation, while the second is called
preservation. If, in addition, for some assertion ψ we have i) ϕ ∧ ρπ |= ψ′ for
every C-free path π from an initial to a final location and ii) A(c) ∧ ρπ |= ψ′ for
every C-free path π from a location c ∈ C to a final location, then A certifies that
P satisfies the specification 〈ϕ,ψ〉. The inductive assertions method of program
verification is due to Floyd [11, 13].

Polynomial Constraints

A monomial in x1, . . . , xn is a product of powers xe def= xd1
1 · · ·xdn

n . A polyno-
mial p is a linear combination c1x

e1 + · · ·+ cmxem of monomials with rational
coefficients c1, . . . , cm. The polynomial ring Q[X,X ′] is the set of all polynomials
in X and X ′. The degree deg(xd1

1 · · ·xdn
n) of a monomial is the sum d1 + · · ·+dn.

170 M.A. Colón

The degree deg(p) of a polynomial p is the maximal degree of its (non-zero)
monomials. A polynomial is linear if its degree is one; quadratic if two.

A nonempty set of polynomials I forms a polynomial ideal iff i) p1 + p2 ∈ I
for all p1, p2 ∈ I and ii) qp ∈ I for all p ∈ I and q ∈ Q[X,X ′]. The ideal
Id(P) generated by a set of polynomials P is the set of linear combinations
q1p1 + · · ·+ qmpm, with p1, . . . , pm ∈ P and q1, . . . , qm ∈ Q[X,X ′]. A set P is a
basis of an ideal I iff I = Id(P). The membership problem for polynomial ideals
is decidable, but requires exponential space [15].

A polynomial constraint is either an equality p = 0 or an inequality p ≥ 0,
and a set of constraints is known as a system. The satisfiability of a system
of polynomial constraints can be decided by quantifier elimination [24], while
systems consisting solely of equalities can be solved using Gröbner bases [3],
resultants [4], or interval methods [17]. However, the problem is NP-hard [4].
Linear equalities can be solved in polynomial time by Gaussian elimination, while
linear inequalities can be solved efficiently using interior point methods [20].

A system S entails the constraint c, denoted by S |= c, when every solution
of S is a solution of c. In such a case, the members of S are the antecedents
of the entailment, and c is the consequent. Entailment can be approximated by
polynomial ideal membership when the constraints are all equalities:

Lemma 1. A system of polynomial equalities p1 = 0, . . . , pm = 0 entails the
equality p = 0 if p ∈ Id(p1, . . . , pm).

In other words, p1 = 0, . . . , pm = 0 |= p = 0 if p = q1p1 + · · · + qmpm, for some
polynomial coefficients q1, . . . , qm. Given a system S : p1 = 0, . . . , pm = 0 and a
constraint c : p = 0, the polynomials q1, . . . , qm establishing S |= c can be found
by heuristically bounding the degrees of terms appearing in the linear combina-
tion q1p1 + · · ·+ qmpm and solving the system of linear equalities characterizing
the coefficients of q1, . . . , qm.

3 Schema-Guided Synthesis

Central to our method is the notion of a program schema. A program schema
S = 〈P, T, 〈ϕ,ψ〉, A,C〉 consists of a finite set of parameters P , a function
T from parameters to programs known as the template, a pair of functions
〈ϕ,ψ〉 from parameters to assertions, a function A from parameters to anno-
tations, and a set of schema constraints C. An instance of a schema is a triple
〈T (θ), 〈ϕ(θ), ψ(θ)〉, A(θ)〉, where θ is an assignment of expressions to parame-
ters which satisfies the constraints. A schema is sound if, for every satisfying
assignment θ, A(θ) is inductive and certifies that T (θ) satisfies 〈ϕ(θ), ψ(θ)〉.

Figure 2 presents a schema to invert a function f(w) = κ, where κ is a polyno-
mial in w. Note that the precondition, postcondition and annotation have been
incorporated into the template. Given a rational x ≥ f(0), the schema computes
the largest integer y for which f(y) ≤ x by linear search. While the polynomial κ
defining f can be of arbitrary degree, as can the polynomials of the invariant I,

Schema-Guided Synthesis of Imperative Programs by Constraint Solving 171

Parameters:
– κ: polynomial in w,
– I: system of polynomial equalities in x, y, z1, . . . , zn,
– α1, . . . , αn: linear polynomials in x, and
– β1, . . . , βn, γ: linear polynomials in x, y, z1, . . . , zn.

Template:
in x : rational;

out y : integer;

local z1, . . . , zn : rational;

{ϕ : x ≥ κ[w 	→ 0]}
�1 : 〈y, z1, . . . , zn〉 := 〈0, α1, . . . , αn〉;
�2 : {A : κ[w 	→ y] ≤ x ∧ I}

while γ ≤ x do

�3 : 〈y, z1, . . . , zn〉 := 〈y + 1, β1, . . . , βn〉;
�4 : halt

{ψ : κ[w 	→ y] ≤ x < κ[w 	→ y + 1]}

Constraints:
1. ∃Δ > 0.∀y ≥ 0.κ[w 	→ y + 1] ≥ κ[w 	→ y] + Δ,
2. x′ = x, y′ = 0, z′

1 = α1, . . . , z
′
n = αn |= I′,

3. I, x′ = x, y′ = y + 1, z′
1 = β1, . . . , z

′
n = βn |= I′, and

4. I |= γ = κ[w 	→ y + 1].

Fig. 2. Schema for function inversion by linear search

the schema restricts the polynomials appearing in the code to linear polynomi-
als. Since this restriction on degrees would otherwise limit the functions that
can be inverted, the schema provides an arbitrary number of scratch variables
z1, . . . , zn for use as temporary storage.

In addition to the restriction to linear polynomials in the program body, the
schema limits its instances to those satisfying the four given constraints. The first
mandates that κ define a function which increases discretely. This requirement
ensures that the loop terminates since f(0), f(1), . . . increases without bound.
The second and third constraints guarantee that I is inductive at �2. The fourth
ensures that the loop condition is equivalent to f(y + 1) ≤ x.

To instantiate the schema, we must find a polynomial κ, a system of polyno-
mial equalities I, and linear polynomials α1, . . . , αn, β1, . . . , βn, and γ satisfying
the given constraints. Along the way, we must also determine the number of
scratch variables needed. Normally, the polynomial κ is provided by the speci-
fication of the program to be synthesized, and the satisfaction of the first con-
straint can be established using quantifier elimination. Thus, we focus on the
remaining constraints.

172 M.A. Colón

Instantiation by Non-linear Constraint Solving

Our method for schema instantiation reduces the problem to non-linear con-
straint solving and instantiates the schema based on a solution generated by a
constraint solver. Notice that the second, third, and fourth constraints of the
schema are entailments between systems of polynomial equalities. By Lemma 1,
the parameters appearing in these constraints can be instantiated by solving sys-
tems of non-linear equalities characterizing the coefficients of the unknown poly-
nomials for which entailment is guaranteed. The non-linearity of these equalities
is due to the parameters. However, to apply this reduction, we must first guess
the number of linear polynomials α1, . . . , αn, β1, . . . , βn, and both the number
and the degrees of the polynomials appearing in the invariant I. Our method
combines heuristics with backtracking to determine the appropriate settings.

The method is best explained by example: Suppose our goal is to instantiate
the schema of Fig. 2 to invert f(w) = w2, i.e., to compute integer square roots.
We will assume that the first constraint has already been established for κ : w2.
Since we have no basis for determining the number of scratch variables z1, . . . , zn

needed for a correct solution, we simply enumerate positive values of n until a
solution is found. Thus, suppose n = 1. We must find a system of polynomial
equalities I in x, y, and z1, a linear polynomial α1 in x, and linear polynomials
β1, γ in x, y, and z1 satisfying the remaining schema constraints. Our reduction
requires us to bound the number and degrees of the polynomials comprising I.
As the purpose of I is to express relationships between the scratch variables
z1, . . . , zn and the remaining variables, a reasonable choice for the number of
equalities in I is n. Thus, we suppose I consists of a single equality. As for the
degree of I, we limit the search to a quadratic equality, based on the fact that
κ is quadratic. These choices, while well-motivated, are nonetheless heuristic. It
may be necessary to backtrack and entertain less restrictive bounds.

Having bounded the number of scratch variables and the number and degree
of the equalities in I, we now construct a system of polynomial constraints on
the coefficients of the invariant I and the polynomials α1, β1, and γ:

I : d1x
2 + d2xy + d3xz1 + d4y

2 + d5yz1 + d6z
2
1 + d7x + d8y + d9z1 + d10︸ ︷︷ ︸

p

= 0,

α1 : a1x + a2, β1 : b1x + b2y + b3z1 + b4, and γ : c1x + c2y + c3z1 + c4

These constraints are crafted to ensure that any solution corresponds to a correct
instance of the schema, based on Lemma 1. For example, the second constraint
of the schema is satisfied provided

p′ = q1p1 + q2p2 + q3p3, (1)

where
p1 : x− x′, p2 : y′, and p3 : a1x + a2 − z′1

and q1, q2, and q3 are arbitrary. The final step of the reduction requires a bound
on the degree of each term in (1). Since the polynomial p′ is quadratic, a

Schema-Guided Synthesis of Imperative Programs by Constraint Solving 173

in x : rational;

out y : integer;

local z1 : rational;

{x ≥ 0}
�1 : 〈y, z1〉 := 〈0, −x − 1 〉;
�2 : {y2 ≤ x ∧ z1 = y2 + y − x − 1 }

while x + y + z1 + 2 ≤ x do

�3 : 〈y, z1〉 := 〈y + 1, 2y + z1 + 2 〉;
�4 : halt

{y2 ≤ x < (y + 1)2}
Fig. 3. Integer square root by linear search

reasonable bound is two. Since p1, p2, and p3 are each linear, a quadratic bound
on the terms implies that q1, q2 and q3 must also be linear:

q1 : r1x + r2y + r3z1 + r4x
′ + r5y

′ + r6z
′
1 + r7

q2 : s1x + s2y + s3z1 + s4x
′ + s5y

′ + s6z
′
1 + s7

q3 : t1x + t2y + t3z1 + t4x
′ + t5y

′ + t6z
′
1 + t7

Expressing (1) as constraints on the coefficients of p′, p1, p2, p3 and those of
q1, q2, q3 yields the following system of polynomial equalities:

r1 + a1t1 = r2 + a1t2 = r3 + a1t3 = r1 − r4 − a1t4 = r5 − s1 + a1t5 = 0,
r6 − t1 + a1t6 = r2 = s2 = t2 = r3 = s3 = t3 = r4 + d1 = r5 + s4 + d2 = 0,

r6 + t4 + d3 = s5 + d4 = s6 + t5 + d5 = t6 + d6 = r7 + a2t1 + a1t7 = a2t2 = 0,
a2t3 = r7 − a2t4 + d7 = s7 − a2t5 + d8 = a2t6 − t7 − d9 = a2t7 − d10 = 0

Continuing in this fashion, the third and fourth constraints of the schema are
reduced to systems of polynomial equalities.

Combining all of the constraints produced by this reduction yields a system
of 64 equations in as many variables. This system is generated by our implemen-
tation in 63 ms.1 Applying the interval solver RealPaver [12] yields the following
solution in 1.6 s:

I : z1 = y2 + y − x− 1 α1 : −x− 1,
β1 : 2y + z1 + 2 γ : x + y + z1 + 2

The program corresponding to this solution, shown in Fig. 3, is somewhat
unnatural, but nonetheless correct, and can be proven so using the generated

1 Reported times are for a 2.5GHz Pentium 4 with 1GB RAM running NetBeans
3.5.1.

174 M.A. Colón

Parameters:
– κ: polynomial in w,
– I: system of polynomial equalities in x, y1, y2, z1, . . . , zn,
– α1, . . . , αn: linear polynomials in x,
– β1, . . . , βn, γ: linear polynomials in x, y1, y2, z1, . . . , zn, and
– δ1, . . . , δn, ε1, . . . , εn, ζ: linear polynomials x, y1, y2, z1, . . . , zn.

Template:
in x : rational;

out y1 : integer;

local y2 : integer, z1, . . . , zn : rational;

{x ≥ κ[w 	→ 0]}
�1 : 〈y1, y2, z1, . . . , zn〉 := 〈0, 1, α1, . . . , αn〉;
�2 : {κ[w 	→ 0] ≤ x ∧ y1 = 0 ∧ (∃k ∈ N.y2 = 2k) ∧ I}

while γ ≤ x do

�3 : 〈y2, z1, . . . , zn〉 := 〈2y2, β1, . . . , βn〉;
�4 : {κ[w 	→ y1] ≤ x < κ[w 	→ y1 + y2] ∧ (∃k ∈ N.y2 = 2k) ∧ I}

while y2 �= 1 do⎡
⎢⎣

�5 : 〈y2, z1, . . . , zn〉 := 〈 1
2
y2, δ1, . . . , δn〉;

�6 : if ζ ≤ x then

�7 : 〈y1, z1, . . . , zn〉 := 〈y1 + y2, ε1, . . . , εn〉

⎤
⎥⎦

�8 : halt

{κ[w 	→ y1] ≤ x < κ[w 	→ y1 + 1]}

Constraints:
1. ∀w ≥ 0.f(w + 1) > f(w),
2. x′ = x, y′

1 = 0, y′
2 = 1, z′

1 = α1, . . . , z
′
n = αn |= I′,

3. I, x′ = x, y′
1 = y1, y

′
2 = 2y2, z

′
1 = β1, . . . , z

′
n = βn |= I′,

4. I |= γ = κ[w 	→ y2],
5. I, x′ = x, y′

1 = y1, y
′
2 = 1

2
y2, z

′
1 = δ1, . . . , z

′
n = δn |= I′,

6. I, x′ = x, y′
1 = y1 + y2, y

′
2 = y2, z

′
1 = ε1, . . . , z

′
n = εn |= I′, and

7. I |= ζ = κ[w 	→ y1 + y2].

Fig. 4. Schema for function inversion by binary search

invariant. The program is slow, however. The number of iterations of the while
loop is linear in x and thus exponential in the size of the representation of x.
Since f(w) = w2 is monotone when w ≥ 0, the integer square root of x can be
computed much more efficiently by binary search.

Figure 4 presents a schema for inversion of a monotone function f(w) = κ.
The schema operates in two phases. During the first phase, an upper bound on
the inverse image of x under f is found and stored in variable y2. This bound is
guaranteed to be a power of two. During the second phase, the inverse image of x
is found by binary search. With each iteration, the interval [y1, y1+y2] is divided

Schema-Guided Synthesis of Imperative Programs by Constraint Solving 175

in two, and the program chooses between the lower- and upper-half based on
the comparison at �6, while maintaining the invariant f(y1) ≤ x < f(y1 + y2).
The loop terminates when y2 = 1, with f(y1) ≤ x < f(y1 + 1).

Searching first for an instance of the schema with one scratch variable, i.e.,
n = 1, and considering only quadratic invariants and quadratic entailment
proofs, our method produces, in 94 ms, a system of 204 equations in 191 vari-
ables. In 26.6 s, RealPaver determines that this system is unsatisfiable – at least
when the coefficients are restricted to small intervals around zero. While not con-
clusive, we take this finding as evidence that there is no correct instance of the
schema making use of only one scratch variable, and we increase n to two. Our
method then produces a system of 379 constraints in 361 variables in 140 ms.
Unfortunately, RealPaver can neither find a solution to the resulting system nor
determine its unsatisfiability within a reasonable amount of time – measured in
days. The inability of existing non-linear constraint solvers to handle the larger
systems generated by our method is the principal motivation for specializing our
method to produce linear constraints.

Instantiation by linear constraint solving

Our specialized method for schema instantiation is based on the observation
that the non-linearity of the generated constraints is largely attributable to the
unknown coefficients of the invariant I and the potential non-linearity of the
scratch variables z1, . . . , zn appearing in I. By fixing I to a system of equalities
before applying the reduction, we can ensure that the resulting constraints are
linear, provided each scratch variable appears only linearly in the chosen system.
Consider again the schema for binary search shown in Fig. 4, and suppose we
have chosen a system of polynomial equalities for I in which scratch variables
appear at most linearly. The parameters appearing in the antecedents of the
second, third, fifth, and sixth constraints are potential sources of non-linearity.
However, these parameters can be moved to the consequents simply by replacing
each scratch variable in I ′ by its corresponding parameter. As each scratch vari-
able appears at most linearly in I, each parameter will appear at most linearly
after substitution. Once all parameters are eliminated from the antecedents, our
reduction is guaranteed to produce only linear equalities.

The method we present is an iterative one which repeatedly chooses an invari-
ant I and then attempts to instantiate the remaining parameters by constraint
solving. If no solution can be found, the invariant is weakened and another at-
tempt is made until the schema is instantiated correctly or the process fails. The
initial invariant is chosen by computing the set of non-linear monomials in the
schema variables with degree no greater than some bound and assigning each
monomial to a unique scratch variable. With each chosen invariant, our method
first focuses on instantiating the schema parameters which determine inductive-
ness: For each initiation or preservation constraint and for each scratch variable,
we produce a system of linear equalities characterizing the correct instantiations
of the schema parameter assigned to that variable. We then solve the result-
ing system to extract the coefficients of the polynomial. Should the resulting
system have no solution, we weaken the invariant by dropping the equality cor-

176 M.A. Colón

responding to the offending scratch variable and repeat the process, searching
for polynomials that establish the inductiveness of the new invariant. Since the
initial invariant contains only finitely many equalities, this process terminates
with an inductive invariant, perhaps the empty system. This invariant is then
used to solve for the remaining parameters of the schema, if possible.

Again, an example serves to clarify the approach: Suppose our goal is to
synthesize a program for computing integer square roots by instantiating the
schema of Fig. 4 with κ : w2. As the initial invariant, we take the following
system of equalities:

I0 : z1 = x2, z2 = xy1, z3 = xy2, z4 = y2
1 , z5 = y1y2, z6 = y2

2

Notice how our method for selecting the initial invariant dispenses with the need
to guess the number of scratch variables. Next, we attempt to instantiate the
parameters α1, . . . , α6 to linear polynomials in x satisfying the second schema
constraint. Replacing z′1, . . . , z

′
6 in I ′ with α1, . . . , α6 yields the equivalent con-

straint

x′ = x, y′1 = 0, y′2 = 1 |=
(

α1 = (x′)2, α2 = x′y′1, α3 = x′y′2,

α4 = (y′1)
2, α5 = y′1y

′
2, α6 = (y′2)

2

)
.

We then consider each consequent in turn and instantiate its parameter by solv-
ing linear equalities. For α1, the resulting system is unsatisfiable, i.e., there is no
linear polynomial in x equal to x2 for all x, while α2 can be instantiated to 0.
Continuing in this fashion yields the following solutions:

α2 : 0, α3 : x, α4 : 0, α5 : 0, α6 : 1

Since we are unable to instantiate α1, we weaken the invariant by dropping the
first equality:

I1 : z2 = xy1, z3 = xy2, z4 = y2
1 , z5 = y1y2, z6 = y2

2

Turning to the three preservation constraints of the schema, our method
instantiates their parameters to linear polynomials which preserve I1:

β2 : z2, β3 : 2z3, β4 : z4, β5 : 2z5, β6 : 4z6

δ2 : z2, δ3 : 1
2z3, δ4 : z4, δ5 : 1

2z5, δ6 : 1
4z6

ε2 : z2 + z3, ε3 : z3, ε4 : z4 + 2z5 + z6, ε5 : z5 + z6, ε6 : z6

As these solutions guarantee the inductiveness of I1, we take the invariant I to
be I1. Finally, we use I to instantiate the remaining parameters:

γ : z6 ζ : z4 + 2z5 + z6

An implementation of our specialized method discovers this solution in 187 ms.
The resulting program, shown in Fig. 5, is somewhat inefficient due to the

scratch variables z2 and z3, which are updated with each iteration of the loop,

Schema-Guided Synthesis of Imperative Programs by Constraint Solving 177

in x : rational;

out y1 : integer;

local y2 : integer, z2, z3, z4, z5, z6 : rational;

{x ≥ 0}
�1 : 〈y1, y2, z2, z3, z4, z5, z6〉 := 〈0, 1, 0, x, 0, 0, 1 〉;

�2 :

⎧⎨
⎩

0 ≤ x ∧ y1 = 0 ∧ (∃k ∈ N.y2 = 2k) ∧
z2 = xy1 ∧ z3 = xy2 ∧ z4 = y2

1 ∧ z5 = y1y2 ∧ z6 = y2
2

⎫⎬
⎭

while z6 ≤ x do

�3 : 〈y2, z2, z3, z4, z5, z6〉 := 〈2y2, z2, 2z3, z4, 2z5, 4z6 〉;

�4 :

⎧⎨
⎩

y2
1 ≤ x < (y1 + y2)

2 ∧ (∃k ∈ N.y2 = 2k) ∧
z2 = xy1 ∧ z3 = xy2 ∧ z4 = y2

1 ∧ z5 = y1y2 ∧ z6 = y2
2

⎫⎬
⎭

while y2 �= 1 do⎡
⎢⎢⎢⎢⎢⎢⎣

�5 : 〈y2, z2, z3, z4, z5, z6〉 := 〈 1
2
y2, z2,

1
2
z3, z4,

1
2
z5,

1
4
z6 〉;

�6 : if z4 + 2z5 + z6 ≤ x then

�7 : 〈y1, z2, z3, z4, z5, z6〉 :=

〈y1 + y2, z2 + z3, z3, z4 + 2z5 + z6, z5 + z6, z6 〉

⎤
⎥⎥⎥⎥⎥⎥⎦

�8 : halt

{y2
1 ≤ x < (y1 + 1)2}

Fig. 5. Integer square root by binary search

but are never used in computing the integer square root. These variables can
be identified using live variable analysis and eliminated by a post processing
phase, which we have not yet implemented in our prototype. Applying the trans-
formation manually results in a program reminiscent of Dijkstra’s well-known
algorithm for integer square roots [7]. This similarity is not surprising given the
fact that the process Dijkstra uses to derive his algorithm – introducing three
variables to hold the values of three non-linear polynomials and maintaining
these values using only linear assignments in the loop body – is analogous to the
strategy incorporated into our specialized method for schema instantiation.

4 Applications

We have applied our methods to synthesize a handful of programs computing
polynomial functions and their inverses, two of which we present. For the sake of
readability, we have manually eliminated the superfluous scratch variables from
the generated programs.

178 M.A. Colón

in x : integer;

out y3 : rational;

local y1, y2 : integer, z8 : rational;

{x ≥ 0}
�1 : 〈y1, y2, y3, z8〉 := 〈1, 0, 0, 0 〉;

�2 : {x ≥ 0 ∧ (∃k ∈ N.y1 = 2k) ∧ y2 = 0 ∧ y3 = y3
2 ∧ z8 = y2

2 }
while y1 ≤ x do

�3 :〈y1, z8〉 := 〈2y1, z8 〉;
�4 : {x ≥ 0 ∧ (∃k ∈ N.y1 = 2k) ∧ y2 = �x/y1� ∧ y3 = y3

2 ∧ z8 = y2
2 }

while y1 �= 1 do⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�5 : y1 := 1
2
y1;

�6 : if even(�x/y1�) then

�7 :〈y2, y3, z8〉 := 〈2y2, 8y3, 4z8 〉
else

�8 :〈y2, y3, z8〉 := 〈2y2 + 1, 6y2 + 8y3 + 12z8 + 1, 4y2 + 4z8 + 1 〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�9 : halt

{y3 = x3}

Fig. 6. Cube by binary decomposition

Cube by Binary Decomposition
Our first example, shown in Fig. 6, is a program which computes the cube of
an integer x by binary decomposition. It uses the binary representation of x
to compute x3 in time polynomial in the size of the representation of x, using
only addition and multiplication by constants. Like the program of Fig. 5, this
program works in two phases: During the first phase, an upper bound on x is
computed in y1. This bound is guaranteed to be the smallest power of two which
exceeds x. During the second phase, y1 is used as a mask to extract the bits of
x from most- to least-significant and copy them into y2, while maintaining the
invariant y3 = y3

2 .
This program was synthesized in 281 ms by instantiating a schema for func-

tion computation by binary decomposition, which we omit for lack of space.
However, it should be noted that one of the virtues of our approach to schema-
guided synthesis is that the correctness of the generated program can be judged
without reference to the schema from which it was derived. We need not certify
the entire process, but only the result.

Quotient by Binary Search
Our last example illustrates the applicability of our method to functions defined
by multivariate polynomials. The program presented in Fig. 7 computes the

Schema-Guided Synthesis of Imperative Programs by Constraint Solving 179

in x1, x2 : rational;

out y1 : integer;

local y2 : integer, z6, z7 : rational;

{x1 ≥ 0 ∧ x2 > 0}
�1 : 〈y1, y2, z6, z7〉 := 〈0, 1, 0, x2 〉;
�2 : {0 ≤ x1 ∧ y1 = 0 ∧ (∃k ∈ N.y2 = 2k) ∧ z6 = x2y1 ∧ z7 = x2y2 }

while z7 ≤ x1 do

�3 : 〈y2, z6, z7〉 := 〈2y2, z6, 2z7 〉;
�4 : {x2y1 ≤ x1 < x2(y1 + y2) ∧ (∃k ∈ N.y2 = 2k) ∧ z6 = x2y1 ∧ z7 = x2y2 }

while y2 �= 1 do⎡
⎢⎢⎢⎣

�5 : 〈y2, z6, z7〉 := 〈 1
2
y2, z6,

1
2
z7 〉;

�6 : if z6 + z7 ≤ x1 then

�7 : 〈y1, z6, z7〉 := 〈y1 + y2, z6 + z7, z7 〉

⎤
⎥⎥⎥⎦

�8 : halt

{x2y1 ≤ x1 < x2(y1 + 1)}

Fig. 7. Quotient by binary search

quotient of integers x1 and x2 by searching for the inverse image of x1 under
f(w) = x2w, and our implementation synthesizes this program in 266 ms by
instantiating the schema of Fig. 4. It should be noted that the first constraint
of the schema requires f to be a monotone, but f is monotone only for positive
values of x2. To discharge this constraint, the inequality x2 > 0 has been added
to the precondition.

5 Conclusion

We have presented an approach to schema-guided synthesis of imperative pro-
grams computing polynomial functions and their inverses. Following Flener et
al. [10], the schemas of our approach contain not only parameterized programs,
but also parameterized specifications and instantiation constraints. The con-
straints serve to limit schema application to produce only correct programs, while
the specifications characterize the behavior of the resulting code. In addition, our
schemas contain parameterized inductive assertions, and schema instantiation
produces programs annotated with loop invariants establishing partial correct-
ness, i.e., proof-carrying code [16]. As a result, the programs we generate can be
proved correct without appealing to the correctness of the process by which they
are derived. In this respect, our approach is similar to that of Stark and Ireland,
who generate annotated imperative programs in a constructive setting [22].

180 M.A. Colón

The constraints of our schemas not only prevent incorrect schema applica-
tion, but also guide the search for correct instances. Our method for schema
instantiation, which we have implemented in a Java prototype, translates the
schema constraints to systems of non-linear equalities, based on an approxima-
tion of entailment provided by polynomial ideals. It then uses a constraint solver
to explore the space of solutions. This deductively-motivated constraint-based
approach has been applied previously to synthesize linear ranking functions [6],
invariant linear inequalities [5], and invariant non-linear equalities [19] of imper-
ative programs.

Another perspective on our schemas is that they represent derived rules of in-
ference in a Hoare logic [1]. This view blurs the distinction between constructive
and schema-guided synthesis, but serves to clarify the role played by schemas.
A purely constructive derivation of integer square root by binary search re-
quires reasoning with inequalities, exponentiation, divisibility, etc. A schema-
guided derivation only requires reasoning with polynomial equalities. Automated
schema-guided synthesis appears more plausible than constructive synthesis be-
cause the deductive machinery needed to instantiate a schema need not be as
powerful as the machinery needed to derive the resulting program from first
principles.

Acknowledgments

Many thanks are due to Myla Archer, Constance Heitmeyer, Ralph Jeffords, and
Elizabeth Leonard for their helpful suggestions.

References

1. P. Anderson and D. Basin. Program development schemata as derived rules. Jour-
nal of Symbolic Computation, 30(1):5–36, 2000.

2. D. Basin, Y. Deville, P Flener, A. Hamfelt, and J. F. Nilsson. Synthesis of pro-
grams in computational logic. In M. Bruynooghe and K.-K. Lau, editors, Program
Development in Computational Logic, pages 30–65. Springer-Verlag, 2004.

3. T. Becker and V. Weispfenning. Gröbner Bases: A Computational Approach to
Commutative Algebra. Springer-Verlag, New York, 1993.

4. J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of non-linear polynomial
equations faster. In G. H. Gonnet, editor, International Symposium on Symbolic
and Algebraic Computation, pages 121–128. ACM Press, 1989.

5. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using
non-linear constraint solving. In F. Somenzi and W. Hunt Jr, editors, 15th Interna-
tional Conference on Computer Aided Verification, pages 420–432. Springer-Verlag,
2003.

6. M. A. Colón and H. B. Sipma. Synthesis of linear ranking functions. In T. Margaria
and W. Yi, editors, 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 67–81. Springer-Verlag, 2001.

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1976.

Schema-Guided Synthesis of Imperative Programs by Constraint Solving 181

8. P. Flener. Achievements and prospects of program synthesis. In A. C. Kakas and
F. Sadri, editors, Computational Logic: Logic Programming and Beyond, Essays in
Honour of Robert A. Kowalski, pages 310–346. Springer-Verlag, 2002.

9. P. Flener and Y. Deville. Towards stepwise, schema-guided synthesis of logic pro-
grams. In T. P. Clement and K.-K. Lau, editors, International Workshop on Logic
Program Synthesis and Transformation, pages 46–64. Springer-Verlag, 1992.

10. P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An abstract formalization of
correct schemas for program synthesis. Journal of Symbolic Computation, 30(1):93–
127, 2000.

11. R. W. Floyd. Assigning meanings to programs. In Proceedings of the Symposium
on Applied Mathematics, volume 19 (Mathematical Aspects of Computer Science),
pages 19–32. 1967.

12. L. Granvilliers. RealPaver User’s Manual. Institut de Recherche en Informatique
de Nantes, 0.3 edition, July 2003.

13. Z. Manna. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.
14. Z. Manna and R. J. Waldinger. Fundamentals of deductive program synthesis.

IEEE Transactions on Software Engineering, 18(8):674–704, 1992.
15. E. Mayr and A. Meyer. The complexity of the word problems for commutative

semigroups and polynomial ideals. Advances in Mathematics, 46(3):305–329, 1982.
16. G. C. Necula. Proof-carrying code. In 24th ACM Symposium on Principles of

Programming Languages, pages 106–119. ACM, 1997.
17. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University

Press, Cambridge, 1990.
18. C. Rich and R. C. Waters. Approaches to automatic programming. Advances in

Computers, 37:1–57, 1993.
19. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop invariant gen-

eration using Gröbner bases. In N. D. Jones and X. Leroy, editors, 31st ACM
Symposium on Principles of Programming Languages, pages 318–329. ACM, 2004.

20. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester, 1986.

21. D. R. Smith. KIDS: A semiautomatic program development system. IEEE Trans-
actions on Software Engineering, 16(9):1024–1043, 1990.

22. J. Stark and A. Ireland. Towards automatic imperative program synthesis through
proof planning. In 14th IEEE International Conference on Automated Software
Engineering, pages 44–51. IEEE Computer Society, 1999.

23. M. E. Stickel, R. J. Waldinger, M. R. Lowry, T. Pressburger, and I. Underwood.
Deductive composition of astronomical software from subroutine libraries. In
A. Bundy, editor, 12th International Conference on Automated Deduction, pages
341–355. Springer-Verlag, 1994.

24. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, 1951.

Run-Time Profiling of
Functional Logic Programs�

B. Brassel1, M. Hanus1, F. Huch1, J. Silva2, and G. Vidal2

1 Institut für Informatik, CAU Kiel,
Olshausenstr. 40, D-24098 Kiel, Germany
{bbr, mh, fhu}@informatik.uni-kiel.de

2 DSIC, Tech. University of Valencia,
Camino de Vera s/n, E-46022 Valencia, Spain

{jsilva, gvidal}@dsic.upv.es

Abstract. In this work, we introduce a profiling scheme for modern
functional logic languages covering notions like laziness, sharing, and
non-determinism. Firstly, we instrument a natural (big-step) semantics
in order to associate a symbolic cost to each basic operation (e.g., variable
updates, function unfoldings, case evaluations). While this cost semantics
provides a formal basis to analyze the cost of a computation, the imple-
mentation of a cost-augmented interpreter based on it would introduce
a huge overhead. Therefore, we also introduce a sound transformation
that instruments a program such that its execution—under the standard
semantics—yields not only the corresponding results but also the associ-
ated costs. Finally, we describe a prototype implementation of a profiler
based on the developments in this paper.

1 Introduction

The importance of profiling in improving the performance of programs is widely
recognized. Profiling tools are essential for the programmer to analyze the effects
of different source-to-source program manipulations (e.g., partial evaluation, spe-
cialization, optimization, etc). Despite this, one can find very few profiling tools
for modern declarative languages. This situation is mainly explained by the diffi-
culty to correctly map execution costs to source code, which is much less obvious
than for imperative languages. In this work, we tackle the definition of a profil-
ing scheme for modern functional logic languages covering notions like laziness,
sharing, and non-determinism (like Curry [6] and Toy [13]); currently, there is
no profiling tool practically applicable to such languages.

When profiling the run time of a given program, the results highly de-
pend on the considered language implementation. However, computing actual

� This work was partially supported by the Spanish Ministerio de Educación y Ciencia
under grant TIN2004-00231, by Generalitat Valenciana GRUPOS03/025, by the ICT
for EU-India Cross-Cultural Dissemination Project ALA/95/23/2003/077-054, and
by the German Research Council (DFG) under grant Ha 2457/5-1.

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 182–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Run-Time Profiling of Functional Logic Programs 183

run times is not always the most useful information for the programmer. Run
times may help to detect that some function is expensive but they do not
explain why it is expensive (e.g., is it called many times? Is it heavily non-
deterministic?).

In order to overcome these drawbacks, we introduce a symbolic profiler which
outputs the number of basic operations performed in a computation. For this
purpose, we start from a natural semantics for functional logic programs [1]
and instrument it with the computation of symbolic costs associated to the
basic operations of the semantics: variable lookups, function unfoldings, case
evaluations, etc. These operations are performed, in one form or another, by
likely implementations of modern functional logic languages. Our cost semantics
constitutes a formal model of the attribution of costs in our setting. Therefore,
it is useful not only as a basis to develop profiling tools but also to analyze the
costs of a program computation (e.g., to formally prove the effectiveness of some
program transformation).

Trivially, one can develop a profiler by implementing an instrumented inter-
preter which follows the previous cost semantics. However, this approach is not
useful in practice as it demands a huge overhead, making the profiling of real-
istic programs impossible. Thus, in a second step, we design a source-to-source
transformation that instruments a program such that its execution—under the
standard semantics—outputs not only the corresponding results but also the as-
sociated costs. We formally state the correctness of our transformation (i.e., the
costs computed in a source program w.r.t. the cost semantics are equivalent to
the costs computed in the transformed program w.r.t. the standard semantics).
Finally, we describe a prototype implementation of a profiler for Curry programs
based on the developments in this paper.

The main contributions of this work are the following. Firstly, we introduce
a cost semantics for functional logic programs which covers laziness, sharing and
non-determinism. This contrasts with [14], where logical features are not con-
sidered, and [2], where sharing is not covered (which drastically reduces its ap-
plicability). Secondly, we introduce a program transformation for instrumenting
a program—so that its execution returns also the cost of the computation—and
prove its correctness. We are not aware of any other transformation for lazy
functional (logic) programs that is proved correct w.r.t. an associated cost se-
mantics.

The paper is organized as follows. In the next section, we recall some founda-
tions for understanding the subsequent developments. Section 3 informally intro-
duces our model for profiling functional logic computations. Section 4 formalizes
an instrumented semantics which also computes cost information. Section 5 in-
troduces a transformation instrumenting programs to compute symbolic costs.
Section 6 describes an implementation of a profiler for Curry programs and Sec-
tion 7 illustrates its use by means of an example. Finally, Section 8 includes a
comparison to related work and concludes. An extended version of this paper
(including the proof of Theorem 1) can be found in [5].

184 B. Brassel et al.

2 Flat Programs

In this work we consider flat programs [9], a convenient standard representation
of functional logic programs which makes explicit the pattern matching strategy
by case expressions. This flat representation constitutes the kernel of modern
functional logic languages like Curry [8, 6] or Toy [13]. We assume that flat pro-
grams are normalized, i.e., let constructs are used to ensure that the arguments
of function and constructor calls are always variables (not necessarily pairwise
different). As in [12], this is essential to express sharing without the use of com-
plex graph structures. A normalization algorithm can be found in [1]. Basically,
normalization introduces one new let construct for each non-variable argument,
e.g., f(e) is transformed into “let x = e in f(x).”

The syntax for normalized flat programs is shown in Figure 1, where we write
on for the sequence of objects o1, . . . , on. A program consists of a sequence of
function definitions such that the left-hand side has pairwise different variable
arguments. The right-hand side is an expression composed by variables, data
constructors, function calls, let bindings (where the local variable x is only visible
in e1, e2), disjunctions (e.g., to represent non-deterministic operations), and case
expressions of the following form (we write (f)case for either fcase or case):

(f)case x of {c1(xn1) → e1; . . . ; ck(xnk
) → ek}

where x is a variable, c1, . . . , ck are different constructors, and e1, . . . , ek are
expressions. The pattern variables xni

are locally introduced and bind the cor-
responding variables of the subexpression ei. The difference between case and
fcase only shows up when the argument x evaluates (at run time) to a free vari-
able: case suspends whereas fcase non-deterministically binds this variable to
the pattern in a branch of the case expression.

Laziness of computations will show up in the description of the behavior
of function calls and case expressions. In a function call, parameters are not
evaluated but directly passed to the body of the function. In a case expression,
only the outermost symbol of the case argument is required. Therefore, the
case argument should be evaluated to head normal form [4] (i.e., a variable or

P ::= D1 . . . Dm (program) Domains
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable) P1, P2, . . . ∈ Prog (Programs)

| c(x1, . . . , xn) (constructor call) x, y, z, . . . ∈ Var (Variables)
| f(x1, . . . , xn) (function call) a, b, c, . . . ∈ C (Constructors)
| let x = e1 in e2 (let binding) f, g, h, . . . ∈ F (Functions)
| e1 or e2 (disjunction) p1, p2, . . . ∈ Pat (Patterns)
| case x of {pk → ek} (rigid case)
| fcase x of {pk → ek} (flexible case)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax for normalized flat programs

Run-Time Profiling of Functional Logic Programs 185

an expression with a constructor at the outermost position). Consequently, our
operational semantics will describe the evaluation of expressions only to head
normal form. This is not a restriction since the evaluation to normal form or
the solving of equations can be reduced to head normal form computations (see,
e.g., [9]).

Extra variables are those variables in a rule which do not occur in the left-
hand side. Such extra variables are intended to be instantiated by flexible case
expressions. In the following, we assume that all extra variables x are explicitly
introduced in flat programs by a direct circular let binding of the form “let x =
x in e”. We call such variables which are bound to themselves logical variables.

In the remainder of this paper, we assume that computations always start
from the distinguished function main which has no arguments.

3 A Run-Time Profiling Scheme

Traditionally, profiling tools attribute execution costs to the functions or proce-
dures of the considered program. Following [2, 14], in this work we take a more
flexible approach which allows us to associate a cost center with any expres-
sion of interest. This allows the programmer to choose an appropriate granu-
larity for profiling, ranging from whole program phases to single subexpressions
in a function. Nevertheless, our approach can easily be adapted to work with
automatically instrumented cost centers; for instance, if one wants to use the
traditional approach in which all functions are profiled, each function can be au-
tomatically annotated by introducing a cost center for the entire right-hand side.
Cost centers are marked with the (built-in) function scc (for set cost center).

Intuitively speaking, given an expression “scc(cc, e)”, the costs attributed to
cost center cc are the entire costs of evaluating e as far as the enclosing context
demands it, including the cost of

– evaluating any function called by the evaluation of the expression e,

but excluding the cost of

– evaluating the free variables of e (i.e., those variables which are not intro-
duced by a let binding in e) and

– evaluating any scc-expressions within e or within any function which is
called from e.

The following program contains two versions of a function to compute the length
of a list (for readability, we show the non-normalized version of function main):

Table 1. Basic costs

Cost criteria Symbol Cost criteria Symbol Cost criteria Symbol
Function unfolding F Allocating a heap object H Case evaluation C
Variable update U Non-deterministic choice N Variable lookup V
Entering an scc E Binding a logical variable B

186 B. Brassel et al.

len(x) = fcase x of { [] → 0
; (y:ys) → let z = 1, w = len(ys) in z + w }

len2s(x) = fcase x of { [] → 0
; (y:ys) → fcase ys of

{ [] → 1
; (z:zs) → let w = 2,

v = len2s(zs)
in w + v } }

main = let list = scc("list",[1..5000])
in scc("len",len(list)) + scc("len2s",len2s(list))

Here, main computes twice the length of the list [1..5000], which is a standard
predefined way to define the list [1,2,3,...,4999,5000]. Each computation of
the length uses a different function, len and len2s, respectively. In principle,
len2s could seem more efficient than len because it performs half the num-
ber of function calls (indeed, len2s has been obtained by unfolding function
len). This is difficult to check with traditional profilers because the overhead
introduced to build the list hides the differences between len and len2s. For
instance, the computed run times in the PAKCS environment [10] for Curry
are 9980 ms and 9990 ms for len([1..5000]) and len2s([1..5000]), respec-
tively.1

From these figures, should one conclude that len and len2s are equally
efficient? In order to answer this question, a profiler based on cost centers
can be very useful. In particular, by including the three cost centers shown
in the program above (function main), the costs of len, len2s, and the con-
struction of the input list can be clearly distinguished. With our execution
profiler which distributes the execution time to different cost centers (its im-
plementation is discussed in Section 6.1), we have measured the following run
times:

cost center main list len len2s
run times 17710 7668966 1110 790

Here, run times are expressed in a number of “ticks” (an artificial time unit
provided by the SICStus Prolog profiling facilities [7]). Thanks to the use of
cost centers, we can easily check that len2s is slightly more efficient than
len. However, what is the reason for these different run times? We introduce
symbolic costs—associated with the basic operations of the language seman-
tics—so that a deeper analysis can be made. The considered kinds of costs are
shown in Table 1. For the example above, our symbolic profiler returns the
following cost attributions (only the most relevant costs for this example are
shown):

1 The slow execution is due to the fact that experiments were performed with a version
of the above program where a symbolic (Peano) representation of natural numbers
is used.

Run-Time Profiling of Functional Logic Programs 187

main list len len2s
H 5000 61700 5100 5100
V 5100 280400 5100 5100
C 5100 280400 5100 5100
F 5300 168100 5100 2600

From this information, we observe that only function unfoldings (F) are halved,
while the remaining costs are equal for both len and len2s. Therefore, we can
conclude that, in this example, unfolding function len with no input data only
improves cost F (which has a small impact on current compilers, as has been
shown before).

4 Cost Semantics

In this section, we instrument a natural (big-step) semantics for functional logic
languages (defined in [1]) with the computation of symbolic costs. Figure 2 shows

(VarCons) cc, Γ [x
ccc	−→ c(xn)] : x ⇓{cc←V } Γ [x

ccc	−→ c(xn)] : c(xn), ccc

(VarExp)
cce, Γ : e ⇓θ Δ : v, ccv

cc, Γ [x
cce	−→ e] : x ⇓{cc←V }+θ+{ccv←U} Δ[x

ccv	−→ v] : v, ccv

(where e is
not a value)

(Val) cc, Γ : v ⇓{ } Γ : v, cc (where v is a value)

(Fun)
cc, Γ : ρ(e) ⇓θ Δ : v, ccv

cc, Γ : f(xn) ⇓{cc←F}+θ Δ : v, ccv

(where f(yn) = e ∈ P
and ρ = {yn 	→ xn})

(Let)
cc, Γ [y

cc	−→ ρ(e′)] : ρ(e) ⇓θ Δ : v, ccv

cc, Γ : let x = e′ in e ⇓{cc←H}+θ Δ : v, ccv

(where ρ = {x 	→ y}
and y is fresh)

(Or)
cc, Γ : ei ⇓θ Δ : v, ccv

cc, Γ : e1 or e2 ⇓{cc←N}+θ Δ : v, ccv
(where i ∈ {1, 2})

(Select)
cc, Γ : x ⇓θ1 Δ : c(yn), ccc cc, Δ : ρ(ei) ⇓θ2 Θ : v, ccv

cc, Γ : (f)case x of {pk → ek} ⇓θ1+{cc←C}+θ2 Θ : v, ccv

(where pi = c(xn) and ρ = {xn 	→ yn})

(Guess)
cc, Γ : x ⇓θ1 Δ : y, ccy cc, Δ[y

cc	→ ρ(pi), yn
cc	→ yn] : ρ(ei) ⇓θ2 Θ : v, ccv

cc, Γ : fcase x of {pk → ek} ⇓θ1+{cc←V,cc←U,cc←B,cc←n∗H}+θN +θ2 Θ : v, ccv

(where pi = c(xn), ρ = {xn 	→ yn}, yn are fresh variables,
and θN = {cc ← N} if k > 1 and θN = { } if k = 1)

(SCC)
cc′, Γ : e ⇓θ Δ : v, ccv

cc, Γ : scc(cc′, e) ⇓θ+{cc′←E} Δ : v, ccv

Fig. 2. Rules of the cost semantics

188 B. Brassel et al.

the cost-augmented semantics. A heap, denoted by Γ,Δ, or Θ, is a partial map-
ping from variables to expressions (the empty heap is denoted by []). The value
associated to variable x in heap Γ is denoted by Γ [x]. Γ [x cc�→ e] denotes a heap
with Γ [x] = e and associated cost center cc; we use this notation either as a con-
dition on a heap Γ or as a modification of Γ . A logical variable x is represented
by a circular binding of the form Γ [x] = x. A value v is a constructor-rooted
term c(en) (i.e., a term whose outermost function symbol is a constructor sym-
bol) or a logical variable (w.r.t. the associated heap). We use judgements of the
form “cc, Γ : e ⇓θ Δ : v, ccv” which are interpreted as “in the context of heap
Γ and cost center cc, the expression e evaluates to value v with associated cost
θ, producing a new heap Δ and cost center ccv”.

In order to evaluate a variable which is bound to a constructor-rooted term
in the heap, rule VarCons reduces the variable to this term. Here, cost V is
attributed to the current cost center cc to account for the variable lookup (this
attribution is denoted by {cc← V } and similarly for the other cost symbols).

Rule VarExp achieves the effect of sharing. If the variable to be evaluated is
bound to some expression in the heap, then the expression is evaluated and the
heap is updated with the computed value; finally, we return this value as the
result. In addition to counting the cost θ of evaluating expression e, both V and
U are attributed to cost centers cc and ccv, respectively.

For the evaluation of a value, rule Val returns it without modifying the heap.
No costs are attributed in this rule since actual implementations have no coun-
terpart for this action.

Rule Fun corresponds to the unfolding of a function call. The result is obtained
by reducing the right-hand side of the corresponding rule (we assume that the
considered program P is a global parameter of the calculus). Cost F is attributed
to the current cost center cc to account for the function unfolding.

Rule Let adds its associated binding to the heap and proceeds with the eval-
uation of its main argument. Note that we give the introduced variable a fresh
name in order to avoid variable name clashes. In this case, cost H is added to
the current cost center cc.

Rule Or non-deterministically reduces an or expression to either the first or
the second argument. N is attributed to the current cost center to account for
a non-deterministic step.

Rule Select corresponds to the evaluation of a case expression whose argument
reduces to a constructor-rooted term. In this case, we select the appropriate
branch and, then, proceed with the evaluation of the expression in this branch
by applying the corresponding matching substitution. In addition to the costs
of evaluating the case argument, θ1, and the selected branch, θ2, we add cost C
to the current cost center cc to account for the pattern matching.

Rule Guess applies when the argument of a flexible case expression reduces
to a logical variable. It binds this variable to one of the patterns and proceeds
by evaluating the corresponding branch. If there is more than one branch, one of
them is chosen non-deterministically. Renaming the pattern variables is neces-
sary to avoid variable name clashes. We also update the heap with the (renamed)

Run-Time Profiling of Functional Logic Programs 189

logical variables of the pattern. In addition to counting the costs of evaluating
the case argument, θ1, and the selected branch, θ2, we attribute to the current
cost center cc costs V (for determining that y is a logical variable), U (for updat-
ing the heap from y �→ y to y �→ ρ(pi)), B (for binding a logical variable), n ∗H
(for adding n new bindings into the heap) and, if there is more than one branch,
N (for performing a non-deterministic step). Note that no cost C is attributed
to cost center cc (indeed, cost B is alternative to cost C).

Finally, rule SCC evaluates an scc-expression by reducing the expression e
in the context of the new cost center cc′. Accordingly, cost E is added to cost
center cc′.

A proof of a judgement corresponds to a derivation sequence using the rules of
Figure 2. Given a program P , the initial configuration has the form “ccmain, [] :
main”, where ccmain is a distinguished cost center. If the judgement

ccmain, [] : main ⇓θ Γ : v, ccv

holds, we say that main evaluates to value v with associated cost θ. The com-
puted answer can be extracted from the final heap Γ by a simple process of
dereferencing.

Obviously, the cost semantics is a conservative extension of the original big-
step semantics of [1], since the computation of cost information imposes no
restriction on the application of the rules of the semantics.

5 Cost Instrumentation

As mentioned before, implementing an interpreter for the cost semantics of Fig-
ure 2 is impracticable. It would involve too much overhead to profile any realistic
program. Thus, we introduce a transformation to instrument programs in order
to compute the symbolic costs:

Definition 1 (cost transformation). Given a program P , its cost instru-
mented version cost(P) is obtained as follows: for each program rule

f(x1, . . . , xn) = e

cost(P) includes, for each cost center cc in P , one rule of the form

fcc(x1, . . . , xn) = Fcc([[e]]cc)

where Fcc(e) is the identity function on e. Counting the calls to Fcc in the proof
tree corresponds to the number of F ’s accumulated in cost center cc. Function [[]]
(shown in Figure 3) is used to instrument program expressions; similarly to Fcc,
functions Vcc, Ucc, Hcc, Ncc, Ccc, Bcc, and Ecc are also defined as the identity
function on their argument.

Observe that the transformed program contains as many variants of each func-
tion of the original program as different cost centers. Semantically, all these
variants are equivalent; the only difference is that we obtain the costs of the

190 B. Brassel et al.

computation by counting the calls to the different cost center identity functions
(like Fcc).

Program instrumentation is mainly performed by function [[]]cc, where cc
denotes the current cost center. We informally explain how the transformation
proceeds by a case distinction on the expression, e, in a call of the form [[e]]cc:

– If e is a variable, a call to function Vcc is added to attribute cost V to cost
center cc.

– If e = c(xn) is a constructor-rooted term, we add a new argument to store the
current cost center. This is necessary to attribute cost U to the appropriate
cost center (i.e., to the cost center of the computed value, see Figure 2).

– A call to a function f(xn) is translated to a call to the function variant
corresponding to cost center cc.

– If e = (let x = e1 in e2) is a let expression, a call to function Hcc is always
added to attribute cost H to cost center cc. Additionally, if the binding is
neither a logical variable nor a constructor-rooted term, the cost center cci,
1 ≤ i ≤ k, of the computed value is determined (by means of an auxiliary
function update, see Figure 3) and a call to Ucci

is added to attribute cost
U to that cost center.

[[x]]cc = Vcc(x)

[[c(x1, . . . , xn)]]cc = c(cc, x1, . . . , xn)

[[f(x1, . . . , xn)]]cc = fcc(x1, . . . , xn)

[[let x = e′ in e]]cc = Hcc

⎛
⎝ let x = x in [[e]]cc) if e′ = x

let x = [[e′]]cc in [[e]]cc if e′ = c(yn)
let x = update([[e′]]cc) in [[e]]cc otherwise

⎞
⎠

[[e1 or e2]]cc = Ncc([[e1]]cc or [[e2]]cc)

[[case x of {pk → ek}]]cc = case [[x]]cc of {p′
k → Ccc([[ek]]cc)}
where p′

i = c(cc′, yn) for all pi = c(yn)
[[fcase x of {pk → ek}]]cc

= if isVar(x)

then Vcc(Ucc(Bcc(θN (fcase [[x]]cc of {p′
k → |pk| ∗ Hcc([[ek]]cc)}))))

else fcase [[x]]cc of {p′
k → Ccc([[ek]]cc)}

where p′
i = c(cc, yn) for all pi = c(yn) and θN (e) =

{
e if k = 1
Ncc(e) if k > 1

[[scc(cc′, e)]]cc = Ecc′([[e]]cc′)

Here, |p| denotes the arity of pattern p, i.e., |p| = n if p = c(xn), and the auxiliary
function update is used to attribute cost U to the cost center of the computed value:

update(x) = case x of {ck(cck, xnk) → Ucck (ck(cck, xnk))}
where c1, . . . , ck are the program constructors.

Fig. 3. Cost transformation [[]]cc for instrumenting expressions

Run-Time Profiling of Functional Logic Programs 191

– If e = (e1 or e2) is a disjunction, a call to Ncc is added to attribute N to
cost center cc.

– If e = case x of {pk → ek} is a rigid case expression, we recursively transform
both the case argument and the expression of each branch, where a call to
Ccc is added to attribute cost C to cost center cc. Observe that the cost
center, cc′, of the patterns is not used (it is only needed in the auxiliary
function update).

– If e = fcase x of {pk → ek} is a flexible case expression, a run-time test
(function isVar) is needed to determine whether the argument evaluates to
a logical variable or not. This function can be found, e.g., in the library
Unsafe of PAKCS. If it does not evaluate to a logical variable, we proceed
as in the previous case. Otherwise, we add calls to functions Vcc, Ucc, Bcc,
and Ncc (if k > 1). Also, in each case branch, calls to Hcc are added to
attribute the size of the pattern to cost center cc. Here, we use n ∗ Hcc as
a shorthand for writing n nested calls to Hcc (in particular, 0 ∗Hcc means
that no call to Hcc is written).

– Finally, if e = scc(cc′, e′) is an scc-expression, a call to function Ecc′ is added.
More importantly, we update the current cost center to cc′ in the recursive
transformation of e′.

Derivations with the standard semantics (i.e., without cost centers) are denoted
by ([] : main ⇓ Γc : v). Given a heap Γ , we denote by Γc the set of bindings
x �→ e′ such that x

cc�−→ e belongs to Γ , where e′ = e if e is a logical variable,
e′ = [[e]]cc if e = c(xn), or e′ = update([[e]]cc) otherwise. Also, in order to make
explicit the output of the instrumented program with the standard semantics,
we write ([] : main ⇓θ Γc : v), where θ records the set of calls to cost functions
(e.g., Hcc, Fcc).

The correctness of our program instrumentation is stated as follows (the proof
can be found in [5]):

Theorem 1 (correctness). Let P be a program and cost(P) be its cost instru-
mented version. Then,

(ccmain, [] : main ⇓θ Γ : v, cc) in P iff ([] : mainccmain
⇓θ Γc : v′) in cost(P)

where v = v′ (if they are variables) or v = c(xn) and v′ = c(cc, xn).

As an alternative to the transformation presented in this section, we could also
instrument programs by partial evaluation [11], i.e., the partial evaluation of
the cost semantics of Section 4 w.r.t. a source program P should return an
instrumented program which is equivalent to cost(P). However, this approach
requires both an implementation of the instrumented semantics as well as an
optimal partial evaluator for the considered language (in order to obtain a rea-
sonable instrumented program, rather than a slight specialization of the cost
semantics). Thus, we preferred to introduce a direct transformation.

Now, we illustrate our cost transformation by means of a simple example.
Consider, for instance, the following definition for function len:

192 B. Brassel et al.

len(x) = fcase x of { Nil → Z
; Cons(y,ys) → let w = scc("b",len(ys))

in S(w) }
Then, the corresponding instrumented definition for the cost center "a" is the
following:

lena(x) =
Fa(if isVar(x)

then Va(Ua(Ba(Na(fcase Va(x) of
{ Nil(cc) → Z(a)
; Cons(cc,y,ys) → Ha(Ha(Ha(let w = update(lenb(ys))

in S(a,w))))
}))))

else fcase Va(x) of
{ Nil(cc) → Z(a)
; Cons(cc,y,ys) → Ca(Ha(let w = update(lenb(ys))

in S(a,w)))
}

)

where the auxiliary function update is defined as follows:

update(x) = case x of { Z(cc) → Ucc(Z(cc))
; S(cc,x) → Ucc(S(cc,x)) }

6 Implementation

The main purpose of profiling programs is to increase run-time efficiency. How-
ever, in practice, it is important to obtain symbolic profiling information as well
as measuring run times. As discussed before, we want to provide cost centers for
both kinds of profiling in order to be able to analyze arbitrary sub-computations
independently of the defined functions. For the formal introduction of costs and
correctness proofs, symbolic costs are the appropriate means. Therefore, we in-
troduced a program transformation dealing with symbolic costs. However, the
presented program transformation can easily be extended for measuring run
times and distribute them through cost centers. In this section, we first present
our approach to measure run times and function calls (Sect. 6.1) and, then,
describe the extensions to obtain symbolic profiling (Sect. 6.2).

6.1 Measuring Run Times

When trying to measure actual run times, the crucial point is to alter the run
time behavior of the examined program as little as possible. If the program
instrumented for profiling runs 50% slower or worse, one profiles the process of
profiling rather than the program execution. Because of this, measuring actual
run times is a matter of low-level programming and, thus, highly depending on
the actual language implementation.

Run-Time Profiling of Functional Logic Programs 193

Our approach is specific to the Curry implementation PAKCS [10]. In this
programming environment, Curry programs are compiled by transforming flat
programs (cf. Section 2) to SICStus Prolog (see [3] for details about this trans-
formation). Note, however, that in contrast to Section 2 the programs are not
necessarily normalized. In order to provide low-level profiling for PAKCS, we
instrument the program with the profiling mechanisms offered by SICStus Pro-
log. Fortunately, SICStus Prolog features low-level profiling instruments which
create an overhead of approximately 22%. The Prolog tools provide precise mea-
suring of the number of predicate and clause calls. For measuring run time, a
number of synthetic units is given which is computed according to [7].

The main challenge was to introduce the cost centers into Prolog profiling.
Luckily, we found a way to do this without further slowing down the execu-
tion of the program being profiled. The only overhead we introduce is code
duplication, since we introduce a different version of each function for each
cost center, as in the program transformation described above. Thus, for the
program

main = SCC "len" (length (SCC "list" (enumFromTo 1 10)))

function main does not call a function length but a variant with the name
“length{len}” and also a function named “enumFromTo{list}”. Gathering all
run times for functions with the attachment {cc}, one gets the run time be-
longing to that cost center. An obvious optimization is to eliminate unreachable
functions like length{list} in the example.

6.2 Extension for Symbolic Profiling

Our approach to symbolic profiling exactly represents the idea described in Sec-
tion 5 above. For each cost, we introduce a new function, e.g., var lookup for
cost V . There are variations of these functions for the different cost centers, e.g.,
var lookup{list} like in Section 6.1. After the execution of the transformed
program, we simply count each call to var lookup{list} to get the sum of
costs V attributed to the cost center list.

The advantage of this method is its simplicity. The demands to use our trans-
formation for profiling with any implementation of Curry are not very high. The
run-time system must only be able to count the number of calls to a certain func-
tion which is easy to implement. The disadvantage is the considerable (but still
reasonable) slowdown as we are not only introducing new functions but also new
function calls. Nevertheless, this overhead does not influence the computation of
symbolic costs.

The overhead introduced by the additional function calls is also the reason
why our profiler generates different programs for run-time profiling and symbolic
profiling. Since the program transformed for symbolic profiling is more than a
magnitude slower than the original program, measuring run times in the program
transformed for symbolic profiling would lead to results that are not strictly
related to the performance of the original program.

194 B. Brassel et al.

It is worthwhile to note that, although the program transformation of Fig. 3
is equivalent to the cost semantics of Fig. 2 for particular computations (as stated
in Theorem 1), there is one important difference:

While the cost semantics is don’t-care non-deterministic, the instru-
mented programs accumulate all costs according to the search strategy.

For instance, the cost for a failing derivation is also accumulated in the cost of
the results computed afterwards. Furthermore, completely failing computations
also have an associated cost while no proof tree (and thus no costs) can be
constructed in the big-step semantics. From a practical point of view, this is an
advantage of the program transformation over the cost semantics, since the cost
of failing derivations is relevant in the presence of non-deterministic functions.

7 Using the Profiler

In this section we present how our profiler can be used to improve the runtime
of Curry programs by means of a larger example. We want to implement an
algorithm solving the following problem:

An alphabet is given by the algebraic datatype

data Letter = A | B | ... | Y | Z
type Word = [Letter]
type Alphabet = [Letter]

Words are defined as sequences of letters and (sub-)alphabets as sets
(implemented as lists) of letters. Define a function sameUsedAlphabet
that takes two words as input and, if both words use the same sub-
alphabet, yields this sub-alphabet as its result.

The basic idea of an algorithm for solving this problem could be the following:

– Extract the sub-alphabets used by each string by means of removing double
occurrences of letters (rmDups).

– Check whether the two sub-alphabets are permutations of each other (isPerm),
otherwise fail.

– Return the sub-alphabet of the first word.

A possible implementation of these functions in Curry could be the following:

rmDups [] = []
rmDups (x:xs) = if elem x (rmDups xs) then rmDups xs

else x:rmDups xs

Thus, an element is kept in the list if it is not an element of the remaining list.

isPerm [] [] = success
isPerm (x:xs) ys | eqWord (zs++[x]++us) ys = isPerm xs (zs++us)

Run-Time Profiling of Functional Logic Programs 195

where zs,us free

eqWord [] [] = success
eqWord (x:xs) (y:ys) | eqLetter x y = eqWord xs ys

eqLetter A A = success
...
eqLetter Z Z = success

In the implementation of isPerm, we exploit the logical features of Curry. The
function isPerm is applied to two lists. We successively delete the elements of the
first list from the second list until both lists are empty. For deleting an element
from the second list, we use the append function (++) as a relation by applying
it to logical variables. When the expression (zs++[x]++us) is compared with
ys by the function eqWord, the logical variable zs is bound to the part of ys in
front of x and us to the part behind x. The list not containing x is zs++us which
is recursively compared with xs.

The functions eqWord and eqLetter define unification for letters and words.
In Curry this unification is generalized to arbitrary data types by means of strict
equality (=:=) [6]. Our implementation also provides profiling information for
this extension. For simplicity, we do not present the technically expensive details
of this extension in this paper and define specific functions for the unification of
words and letters in this example.

Finally, we combine all these functions to solve the problem by means of the
function sameUsedAlphabet:

sameUsedAlphabet :: [Letter] -> [Letter] -> [Letter]
sameUsedAlphabet str1 str2

| isPerm (rmDups str1) (rmDups str2) = rmDups str1

Testing sameUsedAlphabet for short words is reasonably efficient. Unfortunately,
our algorithm does not scale well for longer words. For instance, the application
of sameUsedAlphabet to a word containing all letters of the alphabet does not
terminate within one hour.

To find the source of this inefficiency, we use our profiler. We add two cost
centers "perm" and "rmDups" as follows:

rmDups xs = SCC "rmDups" (rmDups’ xs)
rmDups’ [] = []
rmDups’ (x:xs) = if elem x (rmDups’ xs) then rmDups’ xs

else x:rmDups’ xs

sameUsedAlphabet :: Word -> Word -> Alphabet
sameUsedAlphabet str1 str2
| SCC "perm" (isPerm (rmDups str1) (rmDups str2)) = rmDups str1

196 B. Brassel et al.

Profiling some applications of sameUsedAlphabet, we obtain the following mea-
surements for function unfoldings and heap allocations (we do not present the
other kinds of costs since they do not provide more information here):

sameUsedAlphabet "perm" "rmDups"
applied to F H F H
[A,B] [B,A] 39 18 148 159
[A,B,C,D,E,F] [F,E,D,C,B,A] 237 166 3881 3924
[A,B,C,D,E,F] [F,E,D,C,B,A,F,E,D,C,B,A] 237 166 127643 128316

An analysis of th s profiling results yields the following conclusions:

– The costs for rmDups are much higher than the costs for perm.
– The costs for perm only depend on the sub-alphabet of the words, not on

the size of the word.
– The costs for rmDups grow exponentially in the size of the word.

Without using the profiler, we might have blamed the inefficiency to the logical
part of the program (i.e., the use of the potentially inefficient constraint isPerm).
However, thanks to the information gathered by the profiler, we know that we
should focus on the code of rmDups to optimize our program. In fact, during
the recursion of rmDups we compute the result of rmDups xs twice, which yields
exponential runtime. By simply introducing a let binding for this result, we
obtain a much more efficient version of rmDups:

rmDups [] = []
rmDups (x:xs) = let ys = rmDups xs in

if elem x ys then ys else x:ys

8 Related Work and Conclusions

The approaches closest to our work are [14] and [2]. On the one hand, [14]
presents a formal specification of the attribution of execution costs to cost cen-
ters by means of an appropriate cost-augmented semantics in the context of lazy
functional programs. A significant difference from our work is that our flat rep-
resentation of programs provides for logical features (like non-determinism) and
that we also present a formal transformation to instrument source programs. On
the other hand, [2] introduces a symbolic profiling scheme for functional logic
languages. However, the approach of [2] does not consider sharing (an essential
component of lazy languages) and, thus, it is not an appropriate basis for the de-
velopment of profiling tools for current implementations of lazy functional logic
languages. Furthermore, we introduced a program transformation that allows us
to compute symbolic costs with a reasonable overhead. Finally, in the context
of the PAKCS environment for Curry, we showed how actual run times can also
be computed by reusing the SICStus Prolog profiler.

e e

Run-Time Profiling of Functional Logic Programs 197

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for
Declarative Multi-Paradigm Languages. Journal of Symbolic Computation, 2005.
To appear.

2. E. Albert and G. Vidal. Symbolic Profiling of Multi-Paradigm Declarative Lan-
guages. In Proc. of Int’l Workshop on Logic-based Program Synthesis and Trans-
formation (LOPSTR’01), pages 148–167. Springer LNCS 2372, 2002.

3. S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into
Prolog. In Proc. of the Int’l Workshop on Frontiers of Combining Systems (Fro-
CoS’2000), pages 171–185. Springer LNCS 1794, 2000.

4. H.P. Barendregt. The Lambda Calculus—Its Syntax and Semantics. Elsevier, 1984.
5. B. Braßel, M. Hanus, F. Huch, J. Silva, and G. Vidal. Run-Time Profiling of Func-

tional Logic Programs. Technical report, DSIC, Technical University of Valencia,
2005. Available at: http://www.dsic.upv.es/users/elp/german/papers.html.

6. M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at:
http://www.informatik.uni-kiel.de/~curry/.

7. M. Gorlick and C. Kesselman. Timing Prolog Programs without Clock. In Proc.
of the 4th Symposium on Logic Programming (SLP’87), pages 426–434, 1987.

8. M. Hanus. A Unified Computation Model for Functional and Logic Program-
ming. In Proc. of the 24th ACM Symp. on Principles of Programming Languages
(POPL’97), pages 80–93. ACM, New York, 1997.

9. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, 9(1):33–75, 1999.

10. M. Hanus (ed.), S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS 1.6.0: The Portland Aachen Kiel Curry System—User
Manual. Technical report, University of Kiel, Germany, 2004.

11. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

12. J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. of the ACM
Symp. on Principles of Programming Languages (POPL’93), pages 144–154. ACM
Press, 1993.

13. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of the 10th Int’l Conf. on Rewriting Techniques and Applications
(RTA’99), pages 244–247. Springer LNCS 1631, 1999.

14. P.M. Sansom and S.L. Peyton-Jones. Formally Based Profiling for Higher-Order
Functional Languages. ACM Transactions on Programming Languages and Sys-
tems, 19(2):334–385, 1997.

Constructive Specifications for Compositional Units

Kung-Kiu Lau1, Alberto Momigliano2, and Mario Ornaghi2

1 School of Computer Science, The University of Manchester,
Manchester M13 9PL, United Kingdom

kung-kiu@cs.man.ac.uk
2 Dipartimento di Scienze dell’Informazione,

Universita’ degli studi di Milano,
Via Comelico 39/41, 20135 Milano, Italy
{momiglia, ornaghi}@dsi.unimi.it

Abstract. In previous work, we have introduced a model-theoretic semantics
for compositional units, i.e. reusable units that can be used for compositional
program development. Such units contain open (logic) programs and our model-
theoretic semantics characterizes their correctness and the correctness of their
composition. However, for real-world software development, compositional units
should be inter-operable, i.e. they should accept programs in different languages.
To cater for this, our model-theoretic semantics needs to be used in conjunction
with suitable semantics for behaviours and interfaces. In this paper we describe
one possible approach based on constructive specifications.

1 Introduction

A reusable program unit, or a compositional unit, contains code that can be composed
with other units, to yield a desired behavior. To be widely reusable, a unit should be
open, i.e., not completely defined. The undefined parts become defined as a result of
composition. Examples of open units are generic modules with import/export sections
in modular languages, generic ADT’s [7] and frameworks in OO design [6]. In the
context of Logic Programming, open programs have been proposed as open units, due
to their compositional properties [2]. Units should be only specified by an interface
specification and context dependencies [17], and we need rules for composing and de-
composing interface specifications and to compare them, that is, to state whether inter-
face specification S1 meets or entails interface specification S2. These properties allow
us to combine top-down and bottom-up development.

In all this, the problem context plays an underpinning role. Indeed, context depen-
dencies and specifications have their proper meaning only in the problem context and
the latter plays a fundamental aspect in comparing specifications and to prove program
properties. We have considered the role of the problem context w.r.t. compositionality
in our previous work [10]. We have introduced a model-theoretic semantics for the cor-
rectness of open programs and we have studied how to combine programs, contexts and
specifications into compositional units of interface specifications and code.

Compositional units should be inter-operable, i.e. (pure) logic programs in such
units should be able to inter-operate with programs in different languages. For this,

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 198–214, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Constructive Specifications for Compositional Units 199

a model-theoretic semantics does not suffice. Inter-operation involves properties that
are not explicit in the model-theoretic specifications, such as, for example, input and
output modes in a logic program. Properties of this kind should be explicit in the inter-
face specification of a unit. In this paper we propose a notion of constructive interface
specifications, which can be consistently used with the model-theoretic one – classi-
cal model theory still remaining the basic semantics. This allows us to make explicit
modes and other computational behaviours that are relevant for the correct composition
of programs, but are not apparent in a purely model-theoretic approach. The advantage
of a formalisation of these aspects is that we get both a precise semantics and a com-
positional calculus. The latter allows us to reason about interface specifications and to
derive correct unit compositions, possibly using automatic theorem provers.

2 Program Units and Their Composition

In this section we give an informal overview of our approach to program units and
their composition. We define a program unit as a triple U = 〈Σ,C ,Prog〉, where Σ is a
many-sorted signature, C is a class of Σ-models and Prog is a collection of programs.
We call U a program unit (PU) to avoid confusion with compositional units (CU) in-
troduced in our previous work [10]. The class C is called the context of U . It may be
defined formally (as, e.g., in CU’s) or informally (as we will do in the examples), with
the purpose of specifying the meaning of the procedures used in the unit, in terms of the
problem domain. We distinguish between imported, exported and hidden procedures.
The imported procedures are assumed to be supplied by external units. For each ex-
ported procedure p, Prog contains a program implementing p, hidden in U , and a set
of (public) interfaces p : I1, . . ., p : Ik, that refer to when and how p can be correctly
composed with procedures imported from external units.

Example 1. The context section of the following program unit LG specifies the problem
domain of labeled graphs. The ADT List(V) (lists with elements from V) is included

to define predicates on paths. For example, the definition of x
an

−→ y (x is linked to y by
n consecutive arcs with label a) uses at : [V,Nat,List(V)], defined in List(V) (at(v, i, l)
means that v occurs at position i in list l). The meaning of the imported and exported
procedures is defined by the specifications Sarc, Sconn, Spath, using the context signa-
ture and the concrete data types of the implementation language, such as int in Sconn;
reprNat(i,n) means that the integer i represents the natural number n. We have used a
many-sorted Prolog, to shrink the gap between the context and the implementation level
for the sorts V , L, List(V).
Program unit LG;
Context. SIGNATURE: V,L : sort; −→ : [V,L,V]; INCLUDES: List(V);
INTERPRETATIONS: For each graph, C contains an interpretation where V and L are the
sets of nodes and labels, and x

a−→ y holds iff there is an arc from x to y with label a.

x
an

−→ y ↔ ∃p . at(x,0, p)∧ at(y,n, p)∧ ∀u,v, i. at(u, i, p)∧ at(v,s(i), p) → (u a−→ v)
IMPORT: Sarc:[V,L,V] : arc(x,a,x′)↔ (x a−→ x′).
EXPORT: Spath:[List(V)] : path(p)↔∀x,x′, i. at(x, i, p)∧at(x′,s(i), p)→∃a . x

a−→ x′.

Sconn:[V,L,V,int] : reprNat(i,n)→ (conn(x,a,y, i)↔ (x an

→ y))

200 K.-K. Lau, A. Momigliano, and M. Ornaghi

Programs.
path : P1 (∀x,y. (∃a . ?arc(x+,a−,y+))∨T (¬∃a . arc(x,a,y)))

→ (∀p. ?path(p+)∨T¬path(p));
path : P2 T (∃n . ∀p. path(p)→ length(p)≤ n)∧ (∃s . ∀!x,a,y ∈ s. ?arc(x−,a−,y−))

→ ∃s′ . ∀!p ∈ s′. ?path(p−);
IMPL : path([]).

path([]).
path([X,Y|R]) :−arc(X, ,Y),path([Y|R]).

conn : C1 (∀x,a. ∃y . !arc(x+,a+,y−))
→ (∀x,a, i. T (i≥ 0)→∃y . !conn(x+,a+,y−, i+))

IMPL : conn(X, ,X,0).
conn(X,A,Y,I) :−I> 0,J is I−1,arc(X,A,Z),conn(Z,A,Y,J).

We call Sarc, Sconn, Spath model-theoretic specifications, to distinguish them from con-
structive specifications of the interfaces of the procedures implemented in the program
section. By conn : C1 we mean that conn realizes the interface specified by C1. Simi-
larly for path : P1 and path : P2.

We have used moded call statements, such as ?path(p−), where ‘−’ denotes the
output mode and ‘?’ the query mode. They will be explained later in the paragraph in-
troducing behaviours. Interfaces are interpreted according to the constructive semantics
that we are now going to informally introduce. To reuse LG, an external unit Q has to fix
the interpretation of the open symbols V , L and −→ , to represent the set of the nodes,
labels of a specific graph and to implement the procedure arc. We want to guarantee
that the program implementing arc correctly composes with the programs imported
from LG. To this end, in [10], we have considered a notion of model theoretic interfaces
and correctness. For example, LG.path : Sarc→ Spath is a model theoretic interface for
LG.path and its (model theoretic) correctness means that Spath is true in the minimum
Herbrand model (MHM) of LG.path, whenever LG.path is composed with a program
Q.arc with a MHM satisfying Sarc. This entails that from LG.path : Sarc → Spath and
Q.arc : true→ Sarc we can infer Q.arc◦arcLG.path : true→ Spath. By ◦arc we denote
the import composition with respect to arc, performed at the program level when the
unit (LG) importing arc includes or is included in a unit (Q) exporting arc. For logic
programs, ◦arc is the union, although renaming may be needed.

As the above discussion shows, model theoretic interfaces have a simple declarative
semantics and simple composition rules. However, they do not take into account com-
putational aspects that are relevant for correct program reuse. For example, the interface
LG.path : Sarc → Spath cannot distinguish the following different uses of P.path:

a) If Q.arc decides ∃a . arc(x,a,y) for every pair x,y of nodes of a graph g, we can
use Q.arc◦arc LG.path to decide path(p), for every ground sequence p of nodes.

b) If g has no infinite paths and via Qarc we can obtain a finite enumeration of all the
arcs of g, then Q.arc◦arc LG.path can be used to enumerate all the paths in g.

Interfaces based on constructive specifications make this kind of computational aspects
explicit, while preserving the declarativeness of model-theoretic specifications. For ex-
ample, interfaces P1and P2 correspond to uses a) and b). Here we give an informal
account of constructive specifications and their role in procedure composition, by ex-
plaining the interfaces of the procedures of LG.

Constructive Specifications for Compositional Units 201

Interfaces and specifications. The interface P1 of LG.path is an implication IP1 →
EP1, where IP1 is a specification for the imported procedure arc and EP1 is a spec-
ification for the exported procedure path. The meaning is that LG.path realizes the
behaviour specified by EP1, whenever LG is composed with a unit Q containing a
program Q.arc realizing IP1. More precisely, after the composition, we get a richer
program unit LG+Q, where Q.arc◦arc LG.path realizes EP1. Thus, interfaces model
unit composition at the program level. IP1 is a universal specification. It is realized
iff the main sub-formula (∃a . ?arc(x+,a−,y+))∨T (¬∃a . arc(x,a,y)) is realized for
all the ground substitutions x = t1,y = t2 of the universally quantified variables. The
main sub-formula is an existential specification. An existential specification E is built
by means of ∧, ∨, ∃, starting from moded call statements (such as ?arc(x+,a−,y+))
and T -formulas (such as T (¬∃a . arc(x,a,y))). A ground instance Eσ of E is realized
by a program unit U iff it is realized by the behaviour of U , observed using the moded
call statements of E.

Behaviours. To explain realizability, we have to consider moded call statements and
behaviours. In the moded call statement ?arc(x+,a−,y+) of P1, parameters x, y have
input mode ‘+’, parameter a has output mode ‘−’and arc has query mode ‘?’. Input
and output modes have the usual meaning [4]: a call arc(t1,A, t2) works properly if
t1, t2 are ground and the (possible) variables of A will be instantiated by the answer
substitution. In particular, the query : −arc(t1,A, t2) is admitted, with A a variable.
The query mode ?arc signifies that the set A = a1, . . ., A = ak, . . . of all the answers
can be obtained by backtracking. We represent the corresponding behaviour Barc by the
b-formulas (behaviour formulas) arc(t1,a1, t2), . . ., arc(t1,ak, t2), . . .; if after n answers
backtracking fails, we put the b-formula T (∀a.¬a = a1∧·· ·¬a = an →¬arc(t1,a, t2))
in Barc (if n = 0, Barc = {T (∀a.¬arc(t1,a, t2))}). The use of T for representing failure
will be explained very soon.

Realizability of existential specifications. The formal definition of B ||= E, i.e. when
behaviour B realizes specification E is given in Def. 1. Note that realizability is con-
structive: a realization of A∨ B allows us to decide which disjunct holds and a re-
alization of ∃x . A(x) to obtain an answer x = t. For example, (∃a . arc(t1,a, t2))∨
T (¬∃a . arc(t1,a, t2)) is realized by Barc, as follows. If arc(t1,a1, t2) ∈ Barc, then the
disjunct ∃a . arc(t1,a, t2) is realized, with answer a = a1. If no answers exist, then
T (∀a. ¬arc(t1,a, t2)) ∈ Barc. Therefore the disjunct T (¬∃a . arc(t1,a, t2)) is realized
by the truth of ¬∃a . arc(t1,a, t2).

T -formulas. We have used T in a disjunction of the form H ∨ T (F), to deal with fi-
nite failure: if the attempt of realizing H fails, we conclude that F is true, but we do
not require any further information. In this sense, T corresponds to the classical truth
operator of [15]. T -formulas can be also used as pre-conditions, not requiring any com-
putation. For example, T (∃n . ∀p. path(p)→ length(p)≤ n) in P2 requires that all the
paths of the current graph have length limited by a fixed n, but it does not require to
compute n. Another use of T is illustrated by the bounded quantification ∀!x ∈ s. A(x)

202 K.-K. Lau, A. Momigliano, and M. Ornaghi

used in P2, which abbreviates (∀x. A(x)∨T (¬A(x)))∧(∀x. T (member(x,s))↔A(x)) 1.
Let s be [t1, . . . ,tn]. Then a behaviour B realizes ∀!x ∈ s. A(x) iff it realizes A(t1), . . .,
A(tn) and T (x = t1∧· · ·∧x = tn →¬A(x)). Similarly the notation ∃!x . A(x) abbreviates
∃x . A(x)∧T (∀x,y. A(x)∧A(y)→ x = y).

Different kinds of interfaces. According to the informal explanations above, one can
see that P1 corresponds to use a). Its import part IP1 and export part EP1 specify deci-
sion behaviours. P2 corresponds to use b). Its import and export parts specify enumera-
tion behaviours. Import and export parts of C1 specify selection behaviours: if for every
node x and label a, Qarc selects a y such that x

a−→ y, then for every node x, label a and

integer i≥ 0, LG.conn selects an y such that x
ai

−→ y. Here, !arc is the selection mode.
It means that by means of a call to arc we get an answer (selected by the program),
but backtracking is forbidden or it may not work properly. Functional behaviours are a
special case of selection behaviours, where the selected output is also unique. Decision,
enumeration, selection and functional behaviours are the most common. Of course, a
complex specification may mix them.

Composition calculus. Finally, we have a calculus to compose procedures according
to their interfaces, while preserving realizability. The composition calculus is explained
in Sect. 5.1. We conclude our informal overview with an example, which shows the
application of the calculus and introduces bridge proofs, namely proofs that allow us to
link interfaces in case they do not match exactly. When we include a unit, the context
is included with possible renaming and closures, i.e. instantiations of open symbols, as
illustrated in the next example. Then procedures may be selectively included. We may
hide them (when appropriate) via the operator #. We may also use local (hidden) bridge
programs generated when building bridge proofs.

Example 2. The unit IT implements an iterator of a generic binary operation
Program Unit IT . Context. Contains Nat, a generic domain D and a binary opera-
tion · : [D,D]→ D with left unit u : D. Defines x0 = u, x(n+1) = xn · x.
IMPORT: Sunit:[D] : unit(x)↔ x = u; Sop:[D,D,D] : op(x,a,y)↔ y = x ·a;
EXPORT: Siter:[D,int,D] : reprNat(i,n)→ (iter(x, i,z)↔ z = xn).
Programs.
iter : IT (∃x . !unit(x−))∧ (∀x,a. ∃y . !op(x+,a+,y−))

→ (∀x, i. T (i≥ 0)→∃!z . iter(x+, i+,z−));
IMPL: iter(X,0,U) :−unit(U).

iter(X,I,U) :−I> 0,H is I−1,iter(X,H,V),op(V,X,U).

In the unit LG, LG.conn is tail recursive and conn(x,a,y,n) is defined as x
an

−→ y. If
we include IT into LG and we take the sets V of nodes and L of labels as D, we may

interpret each pair (x,x ·a) as an arc x
a−→ x ·a and we can prove x

an

−→ y ↔ y = x ·an.
Thus we can (re)use LG.conn to compute iter in a tail-recursive way, as follows.

Program Unit LGIT EXTENDS LG, INCLUDES IT .
CLOSE: V := D; L := D; x

a−→ y↔ y = x ·a;

1 With quantifiers such as ∀!x,a,y ∈ s. in P2, s is a list of triples.

Constructive Specifications for Compositional Units 203

THM: i≥ 0→ (iter(x, i,z)↔ conn(u,x,z, i)); op(x,a,y)↔ arc(x,a,y).
Programs.
iter : #IT (∃x . !#unit(x−))∧ (∀x,a, i. T (i≥ 0)→∃y . !#conn(x+,a+,y−, i+))

→ (∀x, i. T (i≥ 0)→∃!z . !iter(x+, i+,z−)) :
IMPL: iter(X,I,Y) :−#unit(U),#conn(U,X,Y,I).

iter : IT (∃x . !unit(x−))∧ (∀x,a. ∃y . !op(x+,a+,y−))
→ (∀x, i. T (i≥ 0)→∃!z . !iter(x+, i+,z−))

IMPL: (rn[unit/#unit] | (rn[op/#arc]◦#arc LG.#conn))◦#conn,#unit (iter : #IT).

Program iter : #IT is a local bridge program (#IT is a local specification, hidden
by #). The clause implementing iter : #IT has been derived from the following bridge
proof pr(#lm1) and corresponds to lemma bd1.

∀E,→ E
rn,∧E2,

T (i≥ 0)

rn[] : ∃x . !#unit(x−)

rn,
∧E1

I#IT

I#IT

(iter : #IT) : I#IT → EIT

(iter : #IT) : ∃!z. !iter(x+, i+,z−)

∃!I

◦∃E

◦∃E,→ I,∀I,→ I

rn[] : ∃y. !#conn(u+,x+,y−, i+) (iter : #IT) : ∃!z. !iter(x+, i+,z−)
(iter : #IT) : !iter(x+, i+,y−)

!#conn(u+,x+,y−, i+)
bd1

!#unit(u−)T (i≥ 0)

!iter’s mode follows from !#conn and modes +, − are treated as usual in logic pro-
grams. I#IT and EIT denote the import and export parts of the interface #IT of LGIT
(the export part coincides with the one of IT). The unicity T -formula needed in ∃!I is
inherited from LG. The empty renaming rn[] is generated by the rule rn. For homoge-
neous programs (as in our example), rn[] works as the identity for import composition.
For heterogeneous programs, it corresponds to a ”communication channel”. ◦∃E is a
derived rule and gives rise to rn[]◦ (iter : #IT), equal to (iter : #IT) 2. The composite
program implementing LGIT.iter is obtained by the following composition proof.

rn[unit/#unit] : ∃x . !#unit(x−)

IIT

rn[op/#arc]◦#arc LG.#conn : E#C1

rn, ∧E1 → E
rn[op/#arc] : I#C1 LG.#conn : I#C1 → E#C1[pr(LG)]

IIT
rn,∧E2

rn[unit/#unit] | (rn[op/#arc]◦#arc LG.#conn) : I#IT (iter : #IT) : I#IT → EIT[pr(#lm1)]
|1, |2,∧I

→ E,
→ I(rn[unit/#unit] | (rn[op/#arc]◦#arc LG.#conn))◦#conn,#unit (iter : #IT) : IIT → EIT

I#C1 and E#C1 denote the import and export parts of interface #C1 (included from
LG and hidden by LGIT). The hiding renaming rn[unit/#unit] generates the clause
#unit(X) :−unit(X) (# preserves the model theoretic semantics). rn[op/#arc] is not
a purely hiding renaming. It requires to prove op(x,y,z) ↔ arc(x,y,z) in the context
and generates #arc(X ,Y,Z) :−op(X ,Y,Z). The operation | is parallel program com-
position. LGIT extends IT and LGIT.iter correctly overrides IT.iter (the exported
iter programs implement the same interface).

2 Importing #conn from an heterogeneous LG, the communication channel (rn[]◦#conn (iter :
#IT)) would be generated.

204 K.-K. Lau, A. Momigliano, and M. Ornaghi

3 Behaviours and Program Composition

In this section, we define behaviours and we discuss the rationale behind them. A be-
haviour represents the knowledge obtained from an observation of a program unit by
calling some of its procedures. The observer may be a human or another procedure. A
call is characterized by the observed call statement C and by the activation substitution
α, indicating the values observed for the variables of C when the call is activated. For
conciseness, we do not consider negation, i.e., C is an atom. We call Cα an activation.
The (call corresponding to an) activation Cα starts a computation, which may succeed,
fail, yield an error or loop. According to the case, we define the answer of Cα as follows:

– If the computation started by Cα yields an error or loops, we do not have any
answers.

– If the computation started by Cα succeeds, we get an answer substitution β, indi-
cating the values returned for the variables of Cα, if any.

– If the computation started by Cα fails, we get the negative answer NO.

To consider backtracking, we use an observation index. The same index is only used
when a call is repeated (by backtracking) to obtain a new answer. Otherwise, differ-
ent observations have different index. Thus we define observation sequences and their
components as follows (components underline backtracking).

– An observation sequence S is a sequence of observations of the form 〈c : Cα,β〉,
where Cα is an activation with observation index c and β is its answer

– the component with index c of S is the sequence S[c] obtained by deleting all the
observations of S with index different from c.

Example 3. Let us consider the composite procedure sum◦sum prod:

sum : sum(X,0,X).
sum(X,s(Y),s(Z)) :− sum(X,Y,Z).

prod : prod(X,0,0).
prod(X,s(Y),Z) :− prod(X,Y,P),sum(P,X,Z).

If prod observes the call statement sum(P,X,Z) in the computation of
prod(s(0),s(s(0)),0), it obtains the following sequence S with components S[1], S[2]:

S = 〈1 : sum(0,s(0),v0),v0 = s(0)〉,〈2 : sum(s(0),s(0),0),NO〉,
〈1 : sum(0,s(0),v0),NO〉

S[1] = 〈1 : sum(0,s(0),v0),v0 = s(0)〉,〈1 : sum(0,s(0),v0),NO〉
S[2] = 〈2 : sum(s(0),s(0),0),NO〉

The following property is required (and assumed) in our approach.

Property 3.1. Let S[c] = 〈c : Cα,β1〉, . . . ,〈c : Cα,βn〉 be a component of an observation
sequence S. If βn is NO, then 〈c : Cα,βn〉 is the last observation with observation index
c occurring in S.

Property 3.1 codifies the fact that backtracking halts when the answer NO is reached.
We define the behaviour BS[c] of a component S[c] as the following set of b-formulae:

Constructive Specifications for Compositional Units 205

– An atom A belongs to BS[c] iff S[c] contains an observation 〈c : Cα,β〉 s.t. A = Cαβ.
– T (∀y. y = t1∧·· ·∧ y = th →¬Cα) belongs to BS[c] iff the last answer of S[c] is NO

and t1, . . . ,th are all the ground terms associated with the open variables y of Cα by
the answer substitutions of S[c].

We define the behaviour BS associated with an observation sequence S as the union
of the behaviours of its components.

Example 4. The behaviours corresponding to the observation sequences of Ex. 3 are:
BS[1] = {sum(0,s(0),s(0)),T (∀x. x = s(0)→¬sum(0,s(0),x))}
BS[2] = {T (¬sum(s(0),s(0),0))}
BS = BS[1]∪BS[2]

Now we link behaviours and unit composition at the program level. A procedure p
exported by P depends on a set π of import procedures of P iff every procedure called
by the program implementing p belongs to π. By P : π ⇒ δ we mean that δ is the
set of the export procedures, π is a set of import procedures and the procedures of δ
depend on π. If P : /0 ⇒ δ, P is a closed program unit, i.e., every and each program
does not need other imported procedures to run. Program composition occurs when
the contexts of two units have been merged. We can model this stage by two C -units
P = 〈Σ,C ,Prog1〉 and Q = 〈Σ,C ,Prog2〉 with a common context C , which specifies the
import, export and hidden procedures of both Prog1 and Prog2. That is, a set of C -units
is a set of separate program units with a common context C . C -units can be composed
by restriction, parallel and import composition, yielding new C -units, as follows:

Restriction. The restriction R.δ of R to a subset δ of the exported procedures is the
C -unit where those procedures and related interfaces not in δ have been deleted.
Parallel composition. The parallel composition R | S is defined only if R : π1 ⇒ δ1,
S : π2 ⇒ δ2, and (π1∪π2)∩(δ1∪δ2) = /0. The resulting C -unit contains and exports
R.δ1 and S.δ2, i.e.: R | S : π1∪π2 ⇒ δ1∪δ2. The (possible) shared procedures must
have the same interfaces and implementations. We have: R | S = S | R.
Import composition. The import composition R◦γ S is defined only if R : π1 ⇒ δ1∪ γ,
S : π2∪ γ⇒ δ2 and (π1∪π2)∩ (δ1∪δ2) = /0. The resulting C -unit exports R.δ1 and
the procedures R.γ are locally composed with S.δ2, so that they no longer depend
on γ, i.e.: R◦γ S : π1∪π2 ⇒ δ1∪δ2. We have: R◦γ1 (S ◦γ2 T) = (R◦γ1 S)◦γ2 T and,
if R | S is defined, R◦γ1 (S◦γ2 T) = (R | S)◦γ1∪γ2 T .

Example 5. We consider C -units P = 〈Σ,C ,Prog〉 containing logic programs. Within
P, we associate the axioms Ax(p) = Ocomp(p)∪CET (p) with the program-clauses im-
plementing a procedure P.p, where Ocomp(p) is the open completion of (the clauses
implementing) p [11] and CET (p) is Clark’s Equality Theory for p [12]. The operation
P |Q is defined if the general conditions introduced above for composition are satisfied
and Ax(δ1∪δ2) = Ax(δ1)∪Ax(δ2). The resulting C -unit contains and exports the pro-
grams for δ1∪δ2. Operation P◦γ Q is defined if the general conditions introduced above
for composition are satisfied and Ax(δ1 ∪ γ∪ δ2) = Ax(δ1 ∪ γ)∪Ax(δ2). The resulting
C -unit contains the programs for δ1 ∪ γ∪ δ2, hides γ and exports δ1 ∪ δ2. The hidden
procedures γ are used locally by δ2. Going back to Ex. 3, if SUM is the closed unit
exporting sum and PROD the one importing the latter and exporting prod, the import

206 K.-K. Lau, A. Momigliano, and M. Ornaghi

composition SUM.sum ◦sum PROD.prod : /0 ⇒ prod is defined and satisfies the above
requirements. As we have seen, if we are only using Prolog programs, it suffices to put
the various programs together, in the same name space. Hiding may be performed, e.g.,
by renaming. If we are using heterogeneous programs, we need also an environment
supporting the communication among them. This is necessary for import composition.

Let P ◦γ Q : /0 ⇒ δ be a C -unit. We can build an observation sequence SE by means
of calls to δ. We call SE an experiment for P ◦γ Q. While doing the experiment SE , we
observe the calls performed by Q on γ. We obtain an observation sequence SI , with
a behaviour BSI . We say that SI is an interface observation sequence and BSI is an
interface behaviour for P◦γ Q. We can abstract from the “server” unit P by introducing
generic behaviours and “oracles”.

A generic b-formula is a ground procedure-atom (i.e., built by a procedure symbol)
or a T -formula of the form T (∀x. = t1∧·· ·∧x = tn →¬A), where A is a procedure-atom
with variables x. A generic behaviour is a consistent set B of generic b-formulae. B is
an import behaviour for Q if the atoms of B contain only import procedures of Q. We
now introduce B-oracles (B [o]): when an activation Cα is performed with observation
index c, a B-oracle B [o] yields one of the following answers:

– 〈c : Cα,β〉, if there is an atom A ∈ B such that A = Cαβ, or
– 〈c : Cα,NO〉, if B contains T (∀y. y = t1∧ ·· ·∧ y = tn →¬Cα) and all the possible

answers to Cα have been given in previous steps, or
– the computation aborts, if none of the previous cases holds.

If there are different possible answers, the oracle makes a choice. It is only obliged
to be fair on backtracking, that is, if an answer of an activation Cα can be chosen,
it will be. An oracle B [o] for a finite behaviour B can (in principle) be implemented
and composed with other programs. To simulate moded procedures, an oracle may be
moded. A moded oracle B [oμ] has a set μ of moded call statements and aborts if a call
is activated that is not allowed by μ.

Example 6. Let P be a C -unit containing logic programs and B be an import behaviour
for P. A B-oracle is a logic program that contains every atom A ∈ B as a fact and suit-
able clauses that abort the program when required. For example, the following program
is an oracle for the behaviour B of Ex. 3.

sum(0,s(0),s(0)).
sum(s(0),s(0),s(s(0))).
sum(X,Y,Z) :− not((X == 0,Y == s(0))),

not((X == s(0),Y == s(0),Z == s(s(0)))), abort.

Different oracles are obtained by changing the order of the facts and allowing pos-
sible repetitions. As an example of another kind of programming language style, we
can consider program units containing imperative style procedures. If we only allow
input-output procedures, the modes will always be of the kind !p(x+ ;y↓). In the con-
text, a model-theoretic specification Sp specifies p as a predicate. By the input mode
x+ , we declare that x are value parameters. By y↓ we denote the reference mode (var-
parameters in Pascal). In an activation, reference parameters can be only replaced by

Constructive Specifications for Compositional Units 207

variables. Oracles can be defined as follows: when a computation performs a call to an
imported procedure q, we provide the result by a table-look-up mechanism, where the
table contains a finite part of B . By the selection mode !, only the first answer is con-
sidered; the computation aborts if no answer is found or the activation is not allowed by
!p(x+ ;y↓). That is, the oracle is moded.

If J is an interface behaviour of P◦γ Q observed by an experiment S, then there is an
oracle oP such that J [oP]◦γ Q replicates exactly the computation of P◦γ Q. However, a
different oracle o′ may yield a different computation of J [o′]◦γ Q. We assume that Q is
behaviourally stable (b-stable), i.e., we assume that for every o′ there is an experiment
S′ for J [o′] ◦γ Q with the same observed behaviour (BS′ ⊇ BS suffices). B-stability of
Q means that it is able to cooperate with external units (simulated by the oracles) in-
dependently from the backtracking details, such as order or repetitions of the answers.
We believe b-stability should be a property of high-level program units, because this
enhances their re-usability. In the next section we will consider b-stability with respect
to the moded import behaviours that realize their specification.

4 Behaviour Specifications and Their Realization

A constructive specification is a Σ-formula given by the following syntax, where BF
stands for b-formulas (atoms built by a procedure symbol) and T F for T -formulas (of
the form T (F), where F is any Σ-formula):

Basic specifications BS ::= BF | T F.
Existential specifications ES ::= BS |ES∧ES | ES∨ES | ∃x . ES.
Universal specifications US ::= ES |US∧US | ∀x. US.

Interfaces IC ::= US |US → IC | IC∧ IC | ∀x. IC.

Universal specifications are a description of behaviours that are realized (exported) or
used (imported) by a program unit. Interfaces relate imported and exported behaviours
and model correct unit composition. They will be explained in the next section. Here,
we consider universal specifications and their realization by closed C -units within a
signature Σ. For behaviours of closed programs we assume that data are reachable (i.e.,
representable by ground Σ-terms). The partial model theoretic correctness of programs
is assumed, to ensure the truth (in C) of the observed b-formulas. Thus a behaviour
correct in C is a set B of b-formulas of the signature Σ, such that C |= B .

The behaviour semantics of universal specifications is given by the realization re-
lation ||= . We write P ||= H to denote that a C -unit P realizes a specification H. This
means that H is realized by the observable behaviour of P, in the way informally ex-
plained in Sect. 2. We firstly define realizability by correct behaviours, considered as
sets of b-formulas true in C . Then we define it by program units.

Definition 1 (Behaviour Realizability). Let B be a behaviour correct in C and E a
ground instance of an ES. Then B ||= E iff one of the following clauses applies:
Basis. For a T -formula T (F), B ||= T (F) iff C |= F.
For a b-formula B, B ||= B iff B ∈ B .

208 K.-K. Lau, A. Momigliano, and M. Ornaghi

Step. According to the cases, we have:

– B ||= F ∧G iff B ||= F and B ||= G.
– B ||= F ∨G iff B ||= F or B ||= G.
– B ||= ∃x . F(x) iff there is a ground term t such that B ||= F(t).
– B ||= ∀x. F(x) iff B ||= F(t), for every ground term t.

Theorem 1. Let B be a correct behaviour and U an US. B ||= U entails C |= U.

That is, the realized formulas are true in the context (assuming reachability). In the
previous definition, behaviours may be infinite. Behaviors of observation sequences are
finite. The following theorem can be easily proved.

Theorem 2. Let E be an ES and B ||= E. Then there is a finite B ′ ⊆ B s.t. B ′ ||= E.

A realization of a universal specification U is, in general, infinite. It can be seen as
the unions of the finite realizations of the existential instances of U .

Definition 2 (Inst(U)). The set Inst(U) of the instances of a ground universal specifi-
cation U is the smallest subset of formulas satisfying the following clauses:

– if U is an ES, then U ∈ Inst(U);
– if t is a ground term and F ∈ Inst(H(t)), then F ∈ Inst(∀x. H(x));
– if F ∈ Inst(H) and G ∈ Inst(K), then F ∧G ∈ Inst(H ∧K).
– If U is open, Inst(U) is the union of the Inst(Uσ), where σ is a grounding substi-

tution.

Theorem 3. Let U be a ground universal specification and B be a behaviour. B ||= U
iff for every instance E ∈ Inst(U) there is a finite B ′ ⊆ B s.t. B ′ ||= E.

Now we can consider realizability by program units. Since T -formulas do not re-
quire any realization, the (possible) procedure symbols occurring in them do not require
computations. We say that they are hidden by T , or inactive; non-hidden occurrences
are called active. A specification S is an export specification for a closed program unit
P : /0 ⇒ δ iff the active call statements of S have procedure symbols from δ. Program
realizability is defined starting from finite experiments. Let E be a ground export exis-
tential specification for P. We say that P realizes E with a (finite) experiment S, written
P ||=S E, iff S is a finite experiment for P such that BS ||= E. For a universal specifica-
tion U , we need to validate the various instances I ∈ Inst(U) by U-moded experiments,
namely experiments that apply moded call statements from U .

Definition 3 (Program Realizability of US). Let U be an export universal specifica-
tion for a closed C -unit P. P ||= U iff for every instance I ∈ Inst(U) there is an U-moded
experiment S s.t. P ||=S I.

Export US are specifications for closed program units. In particular, decision, enu-
meration, selection and functional behaviours can be specified as explained in Sect. 2.
We can use a universal specification U also as an assumption on the expected import
behaviuor of an open unit. In this case, U states the following collaboration agreement:

Constructive Specifications for Compositional Units 209

a client unit Q is assumed to apply only moded call statements of U , while a server unit
P is assumed to answer without loop or abort errors, when it is called according to the
modes declared in U . Concerning the server side (the client side will be considered in
the next section), we require correct moding, as the past history is needed to properly
treat the call index i.

Definition 4 (Correct Moding). Let U be an export universal specification for a closed
C -unit P. U is correctly moded with respect to P iff every U-moded experiment S for P
can be continued into an experiment S,〈i : Cα,ans〉, whenever the activation i : Cα is
legal with respect to the modes of U and the past history S.

5 Interfaces

Interfaces allow us to specify open program units and their clients relations. To properly
abstract from moded server units, we introduce U-moded J -oracles J [oU], where J is
a possibly infinite 3 behaviour, U is a universal specification and oU is a moded oracle
with moded call statements from U . An experiment S for J [oU] is obtained through the
answers chosen by oU and J [oU] ||= U is defined as in Def. 3. We assume fairness (if J
contains an answer for a call statement i : ?Cα, this answer will be chosen by oU) and
correct moding (U is correctly moded with respect to oU , i.e., each legal continuation
of an experiment is answered by oU).

For every server program unit P realizing U there are a behaviour J and an U-moded
oracle oU , such that the experiments of P coincide with those of J [oU]. We use J [oU]
as abstractions of server units and we introduce the semantics of interfaces. We proceed
gradually. We say that U →V is a simple interface if U , V are universal specifications.
U must be an import specification, that is a specification with only import-active call
statements. It is an assumption on the possible import behaviours. V must be an export
specification, that is a specification with only export-active call statements. It states the
expected export behaviour.

Definition 5 (Realizability for Simple Interfaces). Let Q be a C -unit and U → V a
simple interface. Q ||= U →V iff U is an import specification, V an export specification
and for every import oracle J [oU] such that J [oU] ||= U, it holds J [oU]◦U Q ||= V .

This definition of realisability requires b-stability (see Sect. 3) with respect to the
behaviours realizing U (we may choose, for a behaviour J , any oracle oU). The compo-
sitional meaning of simple interfaces is given by the following theorem.

Theorem 4. Let P be a C -unit such that P ||= U and U correctly moded with respect
to P and let Q be a C unit such that Q ||= U →V , for a simple interface U →V . Then
P◦U Q ||= H.

Simple interfaces represent simple composition rules, where the import behaviour
U has to be realized by the server unit as a whole. It may be useful to choose server units

3 We could consider only finite behaviours, but this would complicate our treatment.

210 K.-K. Lau, A. Momigliano, and M. Ornaghi

incrementally, by building intermediate open units. To this aim, we allow conjunctions
and right-nested implications. For example, the interfaces U → (V → H) allows us to
choose a server unit for U and delay the choice of the unit for V .

Definition 6 (Realizability for Interfaces). Let Q be a C -unit and I be an IC. We
inductively define realizability, as follows:
Basis. I is a universal specification. Realizability is defined as in the previous section.
Step. According to the cases:

– I is U → H. We proceed by a secondary induction on H. The base case coincides
with simple interfaces. The step case is as follows:
• H is V → K. Q ||= U → (V → K) iff U,V are universal import specifications

for Q and Q ||= U ∧V → K.
• H is H1∧H2. Q ||= U → (H1∧H2) iff U is a universal import specification for

Q, Q ||= U → H1 and Q ||= U → H2.
• H is U →∀x. H(x). Q ||= U →∀x. H(x) iff U is a universal import specifica-

tion for Q and Q ||= U → H(t), for every ground term t.
– I is H ∧K. Q ||= H ∧K iff Q ||= H and Q ||= K.
– I is ∀x. H(x). Q ||= ∀x. H(x) iff Q ||= H(t) for every ground t.

Composition proofs, bridge proofs and correct modes. The compositional meaning
of interfaces is given by the rules of the compositional calculus shown in Sect. 5.1. By
these rules, we can correctly compose C -units at the program level. Our syntax dis-
tinguishes universal specifications and interfaces. Correspondingly, we have two kinds
of proofs. A proof that applies only the renaming rule rn and the rules for →, ∧, ∀
to interfaces is called a composition proof. It allows us to compose units whose in-
terfaces match via (possible) renaming. If this level of “exact” matching fails, then
we de-structure the universal specifications used in the interfaces and we try to re-
structure them in a different form, by means of the other rules and possible “bridge
lemmas”, such as bdl1 in Ex. 2. Proofs of this kind are called bridge proofs. Correct
modes are required to prove the validity theorem (Thm. 5). They are preserved by com-
position proofs, but might be destroyed by the bridge proofs. For example, a (trivial)
unit containing the procedure p(a) realizes ∃x . !p(x−). If we apply the ∨I2-rule with-
out restrictions, we prove that it realizes ∃x . !p(x−)∨∃x . !q(x−). But :−q(X) fails,
while it should succeed by mode !. Thus correct moding should be always checked in
bridge proofs. Fortunately, there are universal specifications that are correctly moded
independently from the implementation details. Specifications of this kind are called
correctly moded (with respect to any unit P). They have the following property: for ev-
ery instance E ∈ Inst(U), every finite behaviour B such that B ||= E, and every moded
oracle oU (applying the modes of U), there is an observation sequence S for B [oU]
such that B [o] ||=S E. There are syntactical sufficient conditions for correct moding
(omitted here). For example, A∨ T (F) is correctly moded if so is A and it has the
query mode (modes of complex formulas are determined starting from those in call
statements).
Bidirectional interfaces. In our syntax, interfaces model unidirectional composition.
If we enlarge the syntax by allowing interfaces of the form (H → K) → R, we can
model bidirectional composition. We have not yet completed the analysis of this case,

Constructive Specifications for Compositional Units 211

so we only briefly comment on it, by considering the simpler case (U →V)→W , with
U,V,W universal specifications. The active procedures that occur positively (namely in
U and W) must be export procedures, while the ones occurring negatively (namely in V)
must be import procedures. Moreover, the export procedures of U must not depend on
the import procedures of V . In this case, the interface correctly specifies a bidirectional
collaboration, as follows. We say that Q ||= (U → V)→W iff Q ||= U and Q ||= V →
W . A server unit P has to realize U → V . We want to get a bidirectional composition
◦U→V such that P◦U→V Q ||= W . Under our hypotheses, we can say: P◦U→V Q = (Q◦U

P)◦V Q. That is, P uses the behaviour for U exported by Q to realize the behaviour for
V needed by Q. Q uses this behaviour to realize W .

5.1 The Compositional Calculus

In this section we present a possible compositional calculus, where proof-trees are in
the style of natural deduction. The root of a proof-tree is of the form P : A, where P is
a logic program and A is a constructive specification. P : A is the consequence of the
proof tree. Assumptions are specifications. The rules are shown next.

H1, . . . ,Hn
tt(L)

P : T (F)

H1, . . . ,Hn
pr(L)

P : A

f alse
ff

P : A

H1, . . . ,Hn
rn

rn[ρ] : ρ Hi

Pi : A
|i

P1 | P2 : A

P : A1 P : A2
∧I

P : A1∧A2

P : A1∧A2 ∧Ei
P : Ai

P : Ai ∨Ii
P : A1∨A2

A1∨A2

[A1] [A2]
...

...
P : C P : C

∨E
P : C

P : A(t)
∃I

P : ∃x . A(x)

∃x . A(x)

[A(a)]
...

P : C
∃E

P : C

[A]
...

P : B
→ I

P : A→ B

P : A Q : A→ B
→ E

P◦A Q : B

P : A(a)
∀I

P : ∀x. A(x)

P : ∀x. A(x)
∀E

P : A(t)

The rules apply to C -units at the program level. The program rule pr(L j) allows us
to use an already proven pr-“lemma” L j about a unit P. It is also possible to introduce
knowledge from the problem context by the rule tt(Lk), indicating a tt-“lemma” Lk,
proving C |= H1 ∧ ·· · ∧Hn → F . Lemmas (in particular tt-lemmas) are not necessar-
ily developed in the compositional calculus, but may use any system consistent with
classical logic, or they may be informal. Rule rn encodes renaming, which may be
needed for hiding or bridging purposes (see Ex. 2). The application of rn is system-
atically enforced by our calculus (programs do not occur in the assumptions, but are
needed in the consequences). The idea is that renaming correspond to “communication
channels”. The way of forcing renaming is preliminary and needs to be further exper-
imented. The other rules are similar to the ones of intuitionistic predicate logic. The

212 K.-K. Lau, A. Momigliano, and M. Ornaghi

usual provisos apply. We require also that the involved formulas are constructive spec-
ifications in the syntax given in Sect. 4. This entails, in particular, that the assumptions
may only be universal specifications and that the rules for ∨, ∃ can be only applied to
existential specifications. To deal with assumptions, we enlarge our definition of inter-
face and allow interface sequents Γ⇒K, where Γ is a set of interfaces that are universal
specifications:

Definition 7 (Realizability for Interface Sequents). Let Γ ⇒ K be an interface se-
quent for a C -unit P. We say that P realizes Γ ⇒ K, written P ||= Γ ⇒ K, iff for every
grounding Σ-substitution σ, P ||= (∧(Γ)→ K)σ.

The following theorem states the validity of the calculus. The proof considers sep-
arately the bridge proofs, which structure and de-structure universal specifications and
the composition proofs, which structure and de-structure the interfaces. For the bridge
proofs, the preservation of correct moding ought to be checked.

Theorem 5 (Validity). Consider a proof-tree with assumptions Γ and consequence P :
H. If the (possibly informal) tt-lemmas and pr-lemmas are correct, then P ||= Γ⇒H.

6 Discussion

Constructive specifications make explicit aspects that are important for correct compo-
sition. They are based on correct modes and on a constructive semantics. This semantics
is not alternative, but complementary to our previous model-theoretic approach [10]: the
reference semantics still remains classical model theory and constructive logic is used
to obtain more expressive interface specifications. The idea of using constructive logic
to specify interfaces has been influenced by [16], even if we use a different semantics.
The semantics and the calculus explained here are a first step and have been inspired
by the collection semantics introduced in [13, 14] to prove constructivity results for in-
termediate first order systems. The T -operator for formulas that are not constructively
evaluated comes from [15]. The use of distinguished levels for the problem context and
for programs and their interfaces, as well as the possibility of using different program-
ming languages is similar to the Larch specification language [8], although in the latter
constructive logic is not used. We next outline some improvements to our work.

Constructive proofs bridging not exactly coinciding specifications are, in general,
simpler than the proofs needed to derive programs from scratch. A study of proof strate-
gies oriented to module composition and reuse would be interesting.

Behaviours with closed formulae allow us to capture input-output modes with ground
results and the query mode. A possible improvement, as far as logic programs are con-
cerned, is to consider open b-formulas, as e.g. in [1], to capture more general kinds of
modes and compositions, including open answers.

The restriction to correctly moded universal specifications guarantees that a con-
structive evaluation of the export specifications of a server program unit P can be ob-
tained by a client unit Q, by querying P. This explains also our restricted syntax. For
example, we do not allow a disjunction such as (∀x. A(x))∨ (∀x. B(x)). Indeed, to state

Constructive Specifications for Compositional Units 213

that (A(t) holds for all the ground terms t), or (B(t) does), a (possibly) infinite com-
putation is needed. On the other hand, if we know that, say, ∀x. A(x) holds, we can
use this information by inserting it in the behaviour. In this way, is possible to use any
first order formula as a constructive specification. The price to pay is that we have to
introduce in behaviours the knowledge needed to trace constructive evaluations, along
the lines of [13]. The advantage of a restricted syntax is that it adapts to the operational
semantics of any kind of programs, with the only requirement that the model theoretic
meaning of the procedures and functions is to be specified in the context.

Nevertheless, it is useful to investigate possible extensions, related to other kinds
of module operations. In particular, it would be useful to extend ◦ to bidirectional col-
laboration of program units. This corresponds to the use of implications of the form
(A → B)→C. From a first partial analysis of this case (see the discussion in Sect. 5),
it seems that it can be treated without altering the general lines of our approach. In this
way we get a notion of interface that has similarities to the one discussed in [3].

The requirement of b-stability is suited to relatively complete programs, while it
may not work for small pieces of code. In this case a lower level of abstraction is re-
quired. It can be introduced by a different definition of the behaviour associated to
observation sequences and experiments. We believe that an analysis of different levels
of abstraction is interesting and potentially fruitful. In particular, it would be interest-
ing to consider behaviours as multisets to exploit the use of linear logic programming
techniques [9] to express properties of program units that consume resources and to
consider their geometry of collaboration.

In this paper we have concentrated on the definition of behaviour semantics and we
have devised a first composition calculus. We have a validity result. It is difficult to
even define completeness, due to the presence of modes and the fact that we want to
deal with heterogeneous systems. The next step is to experimentally check our ideas
and our calculus in real examples, e.g. addressing case studies of formal specification.

References

1. A. Bossi, M. Gabbrielli, G. Levi, and M.C. Meo. A compositional semantics for logic pro-
grams. Theoretical Computer Science, 122:3–47, 1994.

2. M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. J. Logic Program-
ming, 19-20:443–502, 1994. Special issue: Ten years of logic programming.

3. L. de Alfaro and T. Henzinger. Interface Theories for Component-based Design Proc. of
EMSOFT 2001, LNCS 2211, pp. 148–165, Springer Verlag, 2001.

4. S.K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs, ACM
Transactions on Programming Languages and Systems, 11(3):418–450, 1989.

5. Y. Deville. Logic Programming. Systematic Program Development. Addison-Wesley, 1990.
6. D.F. D’Souza and A.C. Wills. Objects, Components, and Frameworks with UML: The Catal-

ysis Approach. Addison-Wesley, 1999.
7. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2. Springer-Verlag, 1989.
8. J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal Specification.

Springer-Verlag, 1993.
9. J. Hodas and D. Miller. Logic Programming in a Fragment of Intuitionistic Linear Logic.

Information and Computation, 110(2):327–365, 1994.

214 K.-K. Lau, A. Momigliano, and M. Ornaghi

10. K.-K. Lau and M. Ornaghi. Specifying Compositional Units for Correct Program Develop-
ment in Computational Logic. Program Development in Computational Logic: A Decade of
Research Advances in Logic-Based Program Development, LNCS, vol 3049, pp. 1–29, 2004

11. K.-K. Lau, M. Ornaghi, and S.-Å. Tärnlund. Steadfast logic programs. J. Logic Program-
ming, 38(3):259–294, March 1999.

12. J.W. Lloyd. Foundations of Logic Programming. 2nd ed., Springer-Verlag, 1987.
13. P. Miglioli, M. Ornaghi. A logically justified model of computation I , II Fundamenta

Informaticae, 4(1): 151-172, 4(2): 277-342 , 1981.
14. P. Miglioli, U. Moscato, M. Ornaghi. Constructive theories with abstract data types for

program synthesis In D.G. Skordev, editor, Mathematical Logic and its Applications, pages
293–302. Plenum Press, 1987.

15. P. Miglioli, U. Moscato, M. Ornaghi and G. Usberti. A Constructivism based on classical
truth Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.

16. D. Miller. A logical analysis of modules in logic programming. JLP, 6(1-2):79–108, 1989.
17. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-

gramming. Addison-Wesley, second edition, 2002.

Input-Termination of Logic Programs

M.R.K. Krishna Rao

Information and Computer Science Department,
King Fahd University of Petroleum and Minerals,

Dhahran 31261, Saudi Arabia
krishna@ccse.kfupm.edu.sa

Abstract. In this paper, we study termination properties of input-
consuming derivations of moded logic programs. Input-consuming deriva-
tions can be used to model the behavior of logic programs using dy-
namic scheduling and employing constructs such as delay declarations.
A class of logic programs called linear bounded programs is introduced
and input-termination of these programs is investigated. It is proved
that linear bounded programs have only input-consuming LD-derivations
(i.e., under Prolog’s selection) of finite length. An attempt is then made
to extend this result to all input-consuming derivations (not ncessarily
under Prolog’s selection). Through a counterexample, it is shown that
the above result does not hold for the whole class of linear bounded
programs under arbitrary selection. However, it is proved that simply-
moded linear bounded programs have only input-consuming derivations
of finite length, i.e., simply-moded linear bounded programs are input-
terminating with dynamic scheduling. This class contains many programs
like append, delete, insert, reverse, permute, count, listsum, listproduct,
insertion-sort, quick-sort on lists, various tree traversal programs and
addition, multiplication, factorial, power on natural numbers. Further,
it is decidable whether a given logic program is linear bounded or not,
in contrast to the notions of acceptable and recurrent programs.

1 Introduction

Termination is an important property of imperative as well as declarative pro-
grams and proving termination is one of the main steps in arriving at a sound
methodology and for proving the correctness of programs. Recently, termina-
tion of logic programs has attracted a lot of attention and many approaches are
reported in the literature — see a.o. [3-7,9-16,18-22].

In this paper, we study termination of moded programs under dynamic
scheduling. In particular, input-termination of logic programs is investigated.
Input-termination was introduced by Smaus [20] and further studied by Bossi
et.al. [6, 7]. They defined a few classes of input terminating programs using no-
tions of level mappings and models. The main disadvantage of these classes is
that it is undecidable whether a given program belongs to these classes. This
undecidability is not surprising as the termination problem is undecidable and

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 215–230, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216

the classes introduced in [6, 7] give necessary and sufficient conditions for input-
termination.

In this paper, we introduce a class of logic programs called linear bounded pro-
grams and prove that every linear bounded program is input-terminating under
Prolog’s selection rule. It is proved that simply-moded linear bounded programs
are input-terminating under arbitrary selection rules. A simple counterexample
is provided to show that a linear bounded program (if it is not simply-moded)
can have an infinite input-consuming derivation under an arbitrary selection
rule.

The notion of linear bounded programs is purely syntactic and it is decidable
whether a given program is linear bounded or not. The class of linear bounded
programs is rich enough to include many natural programs like, append, delete,
insert, reverse, permute, count, listsum, listproduct, insertion-sort, quick-sort
on lists, various tree traversal programs and addition, multiplication, factorial,
power on natural numbers. Unlike the recent approaches like that of Lagoon et.al.
[16], the notion of linear bounded programs does not use types. This simplicity
together with the decidability and expressive power (to include many natural
programs) makes the class of linear bounded programs very interesting.

The rest of the paper is organized as follows. The next section gives prelimi-
nary definitions needed later and section 3 defines linear bounded programs and
proves the decidability result. Section 4 proves that all input-consuming LD-
derivations of linear bounded programs are of finite length and Section 5 proves
that all input-consuming derivations of simply-moded linear bounded programs
are of finite length, even under arbitrary selection rules.

2 Preliminaries

We assume that the reader is familiar with logic programming concepts and
follow the notations of Lloyd [17] and Apt [1].

Definition 1. A mode m of an n-ary predicate p is a function from {1, · · · , n}
to the set {in, out}. The set in(p) = {i ≤ n | m(i) = in} is the set of input
positions of p and out(p) = {o ≤ n | m(o) = out} is the set of output positions
of p.

A moded program is a logic program with each predicate having a unique
mode associated with it. In the rest of the paper, we assume that the moding
information of all the predicates is available. However, this does not mean that
the programmer has to supply this information as there are many techniques
available in the literature (e.g., [8]) for deriving moding information from a
given logic program.

Remark 1. It may be noted that some predicates may be used in different
modes in a single program. We use different subscripts to a predicate to differ-
entiate between different modings (usages).

M.R.K. Krishna Rao

Input-Termination of Logic Programs 217

Notation: In the following, p(s; t) denotes an atom with a sequence s of input
terms and a sequence t of output terms. Without loss of generality, we assume
that input positions of a predicate precede its output positions.

Definition 2. A moded program P is simply-moded [2] if each clause in it is
simply-moded. A clause p0(s0; t0) ← p1(s1; t1), · · · , pk(sk; tk) is simply-moded
if the following conditions are satisfied:

1. t1, · · · , tk is a linear sequence of variables,
2. V ar(s0) ∩ (V ar(t1),∪ · · · ∪ V ar(tk)) = ∅ and
3. V ar(si) ∩ (V ar(ti),∪ · · · ∪ V ar(tk)) = ∅ for each i ∈ [1, k].

A query ← p1(s1; t1), · · · , pk(sk; tk) is simply-moded if conditions 1 and 3 are
satisfied.

The following definitions from Smaus [20] defines the notion of input termi-
nation.

Definition 3. A derivation step for a program P is a pair 〈Q, θ〉; 〈R, θσ〉, where
Q = Q1, p(s; t), Q2 and R = Q1, B,Q2 are queries; θ is a substitution; p(u;v) ←
B is a renamed variant of a clause in P and σ is an MGU of p(s; t) and p(u;v). A
derivation step is input-consuming if dom(σ)∩vars(sθ) = ∅. An input-consuming
derivation is a sequence of input-consuming derivation steps.

Definition 4. A program P is input-terminating over a set S of queries if all
input-consuming derivations of P starting from every query in S are of finite
length.

Input-consuming derivations do not instantiate variables that only occur
input positions of the initial query. Input termination implies that all input-
consuming derivations are of finite length — the final query in the derivation
does not have to be empty.

3 Linear Bounded Programs

In this section, we define the class of linear bounded programs and illustrate the
concept with a few examples. The definition is based on the concept of modes
and linear predicate inequalities.

Definition 5. For a term t, the parametric size [t] of t is defined recursively as
follows:

– if t is a variable x then [t] is a linear expression x,
– if t is a constant then [t] is zero,
– if t = f(t1, . . . , tn) then [t] is a linear expression 1 + [t1] + · · ·+ [tn].

The parametric size of a sequence t of terms t1, · · · , tn is the sum [t1]+ · · ·+[tn].

218

For a term t (or a sequence t of terms), the sum of all constants in its
parametric size [t] (or [t] resp.) is denoted by [[t]] ([[t]] resp). If t is a ground
term, [t] and [[t]] coincide. Essentially, [[t]] is the parametric size of tθ, where θ is
a substitution replacing all the variables by constants. In other words, [[t]] is the
size of the smallest ground instance of t.

Example 1. The parametric sizes of terms a, [], [X], [a], [a, b, c], [[], [], []],
[[a], [b], [c]] are 0, 0, X + 1, 1, 3, 3, 6 respectively. �

A nice consequence of the above definition of [[t]] is the following lemma
which says that the size of a term never decreases under instantiation (or by an
application of a substitution).

Lemma 1. For every term t and every substitution θ, the size [[tθ]] of term tθ
is greater than or equal to that of t, i.e., [[tθ]] ≥ [[t]].

Remark 2. The above notion of parametric size is similar to many termination
norms used in the literature (see a.o. [5, 9, 10, 13, 15, 18, 22]). In fact, it is possible
to use other norms in its place and yet the results proved in the sequel hold with
minor modifications. For pedagogical reasons, we prove our results for the above
norm of parametric size.

The following definition introduces the notation LI(A, I,O), which is central
to our results. It captures the relation between the sizes of input and output
terms of an atom.

Definition 6. Let P be a moded program and I and O be mappings from the
set of predicates occurring in P to sets of input positions and output positions
satisfying I(p) ⊆ in(p) and O(p) ⊆ out(p) for each predicate p in P . For an atom
A = p(s; t), we denote the linear inequality∑

i∈I(p)

[si] ≥
∑

j∈O(p)

[tj] (1)

by LI(A, I,O).

Remark 3. The validity of (linear) inequalities is traditionally defined as the
follows: the inequality expression1 ≥ expression2 is valid if and only if it
is valid for all possible assignments of values to variables in it. In the sequel,
we only talk of sizes which are obviously non-negative and hence the inequality
expression1 ≥ expression2 is valid if and only if it is valid for all possible
assignments of non-negative values to variables in it. According to this, X +1 >
X is valid but X + Y > X is not valid because Y can take a zero value and
X +0 is not greater than X. Similarly, 2X > X is not valid because X can take
a zero value. However, both X + Y ≥ X and 2X ≥ X are valid.

The following lemma is a simple consequence of this notion of validity.

M.R.K. Krishna Rao

Input-Termination of Logic Programs 219

Lemma 2. The following holds for any inequality exp1 ≥ exp2.

1. exp1 ≥ exp2 is valid if and only if exp1θ ≥ exp2θ is valid for every substitu-
tion θ, and

2. exp1 ≥ exp2 is valid if and only if the constant in exp2 is less than or equal
to the constant in exp1 and the coefficient of each variable in exp2 is less
than or equal to its coefficient in exp1.

The following definition captures the call dependencies (and mutual recur-
sion, if any) between predicates in a program.

Definition 7. Let P be a program, p and q be predicates. We say that predicate
p refers to predicate q in P if there is a clause in P with p in the head and q
in the body. We say that p depends on q and write p /P q if (p, q) is in the
reflexive and transitive closure of the relation refers to.

Now, we are in a position to define the class of linear bounded programs.
Intuitively, any atom p(s; t) in the least Herbrand model of a linear bounded
program (w.r.t. I and O) satisfies the property that the total size of output
terms in positions O(p) is bounded by the total size of input terms in positions
I(p).

Definition 8. Let P be a moded program and I and O be mappings from the
set of predicates occurring in P to sets of input positions and output positions
satisfying I(p) ⊆ in(p) and O(p) ⊆ out(p) for each predicate p in P . We say P
is linear bounded w.r.t. I and O if each clause

p0(s0; t0) ← p1(s1; t1), · · · , pk(sk; tk)

k ≥ 0, in P satisfies the following:

1. LI(A1, I, O), . . . , LI(Aj−1, I, O) together imply

[Iterms(A0, I)] > [Iterms(Aj , I)]

for each j ≥ 1 such that pj /P p0,
2. LI(A1, I, O), . . . , LI(Ak, I, O) together imply LI(A0, I, O), and
3. V ar(s0) ∩ (V ar(t1),∪ · · · ∪ V ar(tk)) = ∅

where Aj is the atom pj(sj; tj) for each j ≥ 0 and Iterms(A, I) is the sequence
of terms occurring in atom A in positions specified by I.
A program P is linear bounded if it is linear bounded w.r.t. some mappings I
and O.

In the above definition, condition 1 is only applicable to the (mutually) re-
cursive atoms in the body. Conditions 1 and 3 are satisfied by all the programs
considered in the sequel.

We illustrate different aspects of our definition through a sequence of
examples.

220

Example 2. Consider the following reverse program.

moding: app(in,in, out) and rev(in, out).

app([], Ys, Ys) ←
app([X|Xs], Ys, [X|Zs]) ← app(Xs, Ys, Zs)

rev([], []) ←
rev([X|Xs], Zs) ← rev(Xs, Ys), app(Ys, [X], Zs)

This program is linear bounded w.r.t. the mappings I(app) = in(app); I(rev) =
in(rev) and O(app) = out(app); O(rev) = out(rev). The first clause satisfies
the requirements of Definition 8 as LI(app([], Ys, Ys), I, O) is Y s ≥ Y s, which
obviously holds. Now consider the second clause.

LI(app(Xs, Ys, Zs), I, O) := Xs + Y s ≥ Zs (2)

LI(app([X|Xs], Ys, [X|Zs]), I, O) := 1 + X + Xs + Y s ≥ 1 + X + Zs. (3)

It is easy to see that inequality 2 implies inequality 3 satisfying the requirement
2 of Definition 8. The requirement 1 of Definition 8 obviously holds as 1 + X +
Xs + Y s > Xs + Y s.

It is easy to check that the third clause satisfies the requirements of Definition
8. Now consider the fourth clause.

LI(rev(Xs, Ys), I, O) := Xs ≥ Y s, (4)

LI(app(Ys, [X], Zs), I, O) := Y s + 1 + X ≥ Zs (5)

and for the head rev([X|Xs], Zs) of the clause,

LI(rev([X|Xs], Zs), I, O) := 1 + X + Xs ≥ Zs. (6)

It is easy to see that inequalities 4 and 5 together imply inequality 6 satisfying
the requirement 2 of Definition 8. The requirement 1 of Definition 8 obviously
holds for the recursive atom rev(Xs, Ys) as 1 + X + Xs > Xs. Hence, reverse
is a linear bounded program. �

The above reverse program is input recursive (i.e., the set of variables oc-
curing in input positions of any recursive atom is a subset of the set of variables
occuring in input positions of the head, for each clause) and simply-moded.
Therefore, it is input terminating by the results of [6]. The quick-sort program
given below is not input recursive and cannot be shown to be input terminating
by the results of [6]. The following example shows that quick-sort is a lin-
ear bounded program and hence input terminating by the results proved in the
sequel.

M.R.K. Krishna Rao

Input-Termination of Logic Programs 221

Example 3. Consider the following quick-sort program.

moding: app (in, in, out); part (in, in, out, out) and
qs (in, out)

app([], Ys, Ys) ←
app([X|Xs], Ys, [X|Zs]) ← app(Xs, Ys, Zs)

part([], H, [], []) ←
part([X|Xs], H, [X|Ls], Bs) ← X ≤ H, part(Xs, H, Ls, Bs)
part([X|Xs], H, Ls, [X|Bs]) ← X > H, part(Xs, H, Ls, Bs)

qs([], []) ←
qs([H|L], S) ← part(L, H, A, B), qs(A, A1), qs(B, B1), app(A1, [H|B1], S)

This program is linear bounded w.r.t. the mappings such that I(p) = in(p)
and O(p) = out(p) for each predicate except that I(part) = {1}. The third clause
satisfies the requirements of Definition 8 as LI(part([], H, [], []), I, O) is the
inequality 0 ≥ 0. Let us now consider the fourth clause. For the recursive atom
part(Xs, H, Ls, Bs), the requirement 1 of Definition 8 holds as 1+X +Xs > Xs.
We now prove that requirement 2 also holds for this clause.

LI(X ≤ H, I, O) := X + H ≥ 0, (7)

LI(part(Xs, H, Ls, Bs), I, O) := Xs ≥ Ls + Bs (8)

LI(part([X|Xs], H, [X|Ls], Bs), I, O) := 1 + X + Xs ≥ 1 + X + Ls + Bs. (9)

It is easy to see that inequality 8 implies inequality 9 satisfying the require-
ment 2 of Def. 8. It can be similarly proved that the fifth clause satisfies the
requirements.

It is easy to see that the sixth clause satisfies the requirements of Definition
8. Now consider the last clause.

LI(part(L, H, A, B), I, O) := L ≥ A + B, (10)

LI(qs(A, A1), I, O) := A ≥ A1, (11)

LI(qs(B, B1), I, O) := B ≥ B1, (12)

LI(app(A1, [H|B1], S), I, O) := A1 + 1 + H + B1 ≥ S (13)

and for the head qs([H|L],S) of the clause, LI(qs([H|L], S), I, O) is

1 + H + L ≥ S. (14)

It is easy to see that inequalities 10, 11, 12 and 13 together imply inequality 14
satisfying requirement 2 of Definition 8. The requirement 1 of Definition 8 holds
for recursive atoms qs(A, A1) and qs(B, B1) as inequality 10 implies 1+H+L > A
and 1 + H + L > B. Therefore, quick-sort is a linear bounded program. �

222

The above two program reverse and quick-sort programs have linear re-
lationships between the input and output. The following example shows that
the class of linear bounded programs is rich enough to include programs with
non-linear relationships between the input and output.

Example 4. Consider the following multiplication program.

moding: add (in, in, out) and mult (in, in, out)

add(0, Y, Y) ←
add(s(X), Y, s(Z)) ← add(X, Y, Z)

mult(0, Y, 0) ←
mult(s(X), Y, Z) ← mult(X, Y, Z1), add(Y, Z1, Z)

To prove that this program is linear bounded, take I and O as the mappings
I(add) = in(add), O(add) = out(add) and I(mult) = in(mult) and O(mult) =
∅.

The first and third clauses obviously satisfy the requirements of Definition 8
as
LI(add(0, Y, Y), I, O) is Y ≥ Y and LI(mult(0, Y, 0), I, O) is Y ≥ 0.

Let us now consider the second clause.

LI(add(X, Y, Z), I, O) := X + Y ≥ Z (15)

LI(add(s(X), Y, s(Z)), I, O) := 1 + X + Y ≥ 1 + Z. (16)

It is easy to see that inequality 15 implies inequality 16 satisfying the requirement
2 of Definition 8. The requirement 1 of Definition 8 obviously holds as 1+X+Y >
X + Y .

Let us now consider the fourth clause.

LI(mult(X, Y, Z1), I, O) := X + Y ≥ 0 (17)

LI(add(Y, Z1, Z), I, O) := Y + Z1 ≥ Z. (18)

and for the head mult(s(X), Y, Z) of the clause,

LI(mult(s(X), Y, Z), I, O) := 1 + X + Y ≥ 0. (19)

It is easy to see that inequalities 17 and 18 together imply inequality 19 satisfying
the requirement 2 of Definition 8 (in fact, inequality 19 is vacuously true, no
need to use inequalities 17 and 18). The requirement 1 of Definition 8 obviously
holds as 1 + X + Y > X + Y . Therefore, multiplication is a linear bounded
program. �

The best thing about the class of linear bounded programs is that it is decid-
able whether a given moded program P is linear bounded. We prove this result
by first proving that it is decidable whether a given moded program P is linear
bounded w.r.t. a given pair of mappings I and O.

M.R.K. Krishna Rao

Input-Termination of Logic Programs 223

Theorem 1. It is decidable whether a moded program P is linear bounded w.r.t.
a given pair of mappings I and O satisfying I(p) ⊆ in(p) and O(p) ⊆ out(p) for
each predicate p in P .

Proof : Follows from the fact that this problem can be reduced to the satisfiability
problem of linear inequalities. �

The verification of linear boundedness of a program w.r.t. a given pair of map-
pings I and O can be easily automated [11] using the constraint-based approach
to termination verification from [10, 22].

Theorem 2. It is decidable whether a moded program P is linear bounded or
not.

Proof : Since only finitely many choices are possible for I and O, we can check
if P is linear bounded w.r.t. at least one such pair of mappings I and O. �

The significance of this result may be appreciated by noting that the other
notions used for proving termination, such as, recurrence and acceptability are
undecidable.

4 Termination of Linear Bounded Programs Under
Prolog’s Selection Rule

In this section, we prove that linear bounded programs only have input-consuming
derivations of finite length under Prolog’s left-to-right selection rule. We extend
this result to arbitrary input-consuming derivations in the next section. A deriva-
tion is an input-consuming LD-derivation if the leftmost atom is selected every
time and each step is input-consuming.

Theorem 3. Let P be a linear bounded program w.r.t. a pair of mappings I and
O. If there is an input-consuming LD-refutation G of P ∪{← A} with computed
answer substitution σ, then LI(Aσ, I,O) is valid.

Proof : Induction on the length l of G. If l = 1, there is a unit clause H ← in
P such that Aσ ≡ Hσ. Since P is a linear bounded program w.r.t. I and O,
LI(H, I,O) is valid by the requirement 2 of Definition 8. Now, by Lemma 2,
LI(Hσ, I,O) is valid. Since Aσ ≡ Hσ, LI(Aσ, I,O) is also valid.

We now prove that theorem holds for l = n if we assume that theorem
holds for all 1 ≤ l < n. Let H ← B1, · · · , Bk be the input clause used in the
first LD-resolution step in G. Since P is a linear bounded program w.r.t. I and
O, the inequalities LI(B1, I, O), · · · , LI(Bk, I, O) together imply the inequal-
ity LI(H, I,O) by the requirement 2 of Definition 8. By Lemma 2 it follows
that LI(B1σ, I,O), · · · , LI(Bkσ, I,O) together imply LI(Hσ, I,O). Obviously,
for each i ∈ [1, k], Biσ has an LD-refutation G of length less than n. Therefore,
the inequalities LI(B1σ, I,O), · · · , LI(Bkσ, I,O) are valid by the induction hy-
pothesis, and hence LI(Hσ, I,O) is valid. Since Aσ ≡ Hσ, LI(Aσ, I,O) is also
valid. �

224

It may be noted that the above theorem holds for any SLD-refutation (not
just input-consuming LD-refutation). In fact, it shows how linear inequalities
capture relevant information about semantics (model used in the notion of ac-
ceptability) of linear bounded programs.

The following two theorems show that the recursive calls get smaller and
smaller in LD-derivations of linear bounded programs.

Theorem 4. Let P be a linear bounded program w.r.t. a pair of mappings I and
O. If G = Q0, Q1, · · · , Qn is an LD-derivation of P ∪ {← A} with partial com-
puted answer substitution σ such that Qn =← A′, · · · and A′ is the first selected
atom in G satisfying rel(A′) /P rel(A), then [Iterms(Aσ, I)] > [Iterms(A′, I)].

Proof : Let H ← B1, · · · , Bk be the input clause used in the first LD-resolution
step in G. Since none of the atoms selected before A′ is in mutual recursion
with A, it is clear that A′ ≡ Bjσ for some j ∈ [1, k]. Since P is a linear
bounded program w.r.t. I and O, LI(B1σ, I,O), · · ·, LI(Bkσ, I,O) together im-
ply [Iterms(Hσ, I)] > [Iterms(Bjσ, I)] by the requirement 1 of Definition 8.
Since we are following Prolog’s selection rule, for each i ∈ [1, j − 1], Biσ has an
LD-refutation. Therefore, the inequalities LI(B1σ, I,O), · · ·, LI(Bj−1σ, I,O) are
valid by the Theorem 3, and hence [Iterms(Hσ, I)] > [Iterms(Bjσ, I)]. Since
Aσ ≡ Hσ and A′ ≡ Bjσ, it follows that [Iterms(Aσ, I)] > [Iterms(A′, I)]. �

Theorem 5. Let P be a linear bounded program w.r.t. a pair of mappings
I and O. If G = Q0, Q1, · · · , Qn is an input-consuming LD-derivation of
P ∪ {← A} with partial computed answer substitution σ such that Qn =←
A′, · · · and A′ is the first selected atom in G satisfying rel(A′) /P rel(A), then
[[Iterms(A, I)]] > [[Iterms(A′, I)]].

Proof : From the above theorem, [Iterms(Aσ, I)] > [Iterms(A′, I)]. Since G
is an input-consuming derivation, input terms of do not get instantiated by
G and Iterms(Aσ, I) ≡ Iterms(A, I). Hence [Iterms(A, I)] > [Iterms(A′, I)].
By Lemma 2, the constant in [Iterms(A, I)] is greater than the constant in
[Iterms(A′, I)]. Therefore, it is clear from the definition of [[.]] that [[Iterms(A, I)]]
> [[Iterms(A′, I)]]. �

Input termination of linear bounded programs under Prolog’s selection rule
follows from this theorem.

Theorem 6. If P is a linear bounded program and A is an atom, every input-
consuming LD-derivation of P ∪ {← A} is of finite length.

Proof : Follows from the above theorem by noetherian induction. �

Example 5. Since programs for multiplication, reverse and quick- sort
are linear bounded, they input-terminate under Prolog’s selection rule by
Theorem 6. �

M.R.K. Krishna Rao

Input-Termination of Logic Programs 225

4.1 Comparison with Related Works

Bossi et.al. [7] defined a class of simply acceptable programs using notions of
simply local substitutions, simply local models and moded level mappings. Due
to lack of space, we do not include definitions of these notions here, but refer
interested reader to [7]. The main result on input termination proved in [7] is
the following theorem.

Theorem 7. A simply-moded program is input terminating for all simply-moded
queries if and only if it is simply acceptable.

The relation between Theorems 6 and 7 is the following:

1. Theorem 6 does not require a program to be simply-moded while Theorem
7 requires it to be simply-moded. Therefore, Theorem 6 is applicable to a
wider class of programs.

2. On the other hand, Theorem 7 gives a necessary and sufficient condition for
input termination (of simply-moded programs) while Theorem 6 gives only
a necessary condition for input termination. That’s, there are some input
terminating programs which are not linear bounded.

3. In view of the above point, the class of simply acceptable programs has
undecidable membership problem, while membership problem for the class
of linear bounded programs is decidable.

5 Input Termination of Linear Bounded Programs

In this section, we prove that all input-consuming derivations of simply-moded
linear bounded programs (even if we do not follow Prolog’s left-to-right se-
lection rule) are of finite length. Since we are now considering arbitrary se-
lection rule, our results in the previous section do not extend to the whole
class of linear bounded programs, but only simply-moded linear bounded pro-
grams.

Taking advantage of the left switching lemma proved in [6], we restrict our
attention to input-consuming derivations in which no atom is selected after one
of its right neighbors has been selected. That is, if atom Aj is selected from the
query ← A1, · · · , An, the atoms A1, · · · , Aj−1 will never be selected in the rest
of the derivation.

Our proof technique is to show that corresponding to every atom B selected
in an input-consuming derivation of P ∪{← A} under an arbitrary selection rule,
there is a selected atom Bθ in some input-consuming derivation of Paug∪{← A}
under Prolog’s left-to-right selection rule, for some substitution θ, where Paug

is a linear bounded program obtained by adding a few unit clauses to P . This
ensures finiteness of all input-consuming derivations, because LD-derivations are
of finite length by the results of Section 4.

Definition 9. Let P be a moded program and p be a predicate in it with m
input positions and n output positions. The dummy clause for p (denoted by
DC(p)) is defined as the unit clause

226

p(X1, · · · , Xm, 01, · · · , 0n) ←,

where X1, · · · , Xm are distinct variables and 01, · · · , 0n are fresh constants not
occurring in P . The augmented program Paug of P is defined as P ∪{DC(p) | p
is a predicate in P}.

The following lemma shows that Paug is linear bounded whenever P is.

Lemma 3. If a program P is linear bounded w.r.t. I and O, Paug is linear
bounded w.r.t. I and O as well.

Proof : Each dummy clause is linear bounded w.r.t. I and O as the output terms
are all constants (whose size is defined as 0), i.e., [01, · · · , 0n] = 0. Each clause
in P is already linear bounded w.r.t. I and O. Therefore, Paug is linear bounded
w.r.t. I and O. �

The following theorem shows that corresponding to every step in an input-
consuming derivation of P ∪ {← A} under an arbitrary selection rule, there
is a step in some input-consuming derivation of Paug ∪ {← A} under Prolog’s
selection rule.

Theorem 8. Let P be a linear bounded simply-moded program and Q1, · · ·,
Qn, Qn+1 be an input-consuming derivation of P ∪ {Q1} with A1, · · · , An as
the sequence of selected atoms and Q1 a simply-moded query. Then there is an
input-consuming LD-derivation AQ1, · · · , AQm of Paug∪{Q1} such that there is
a sequence of integers 1 ≤ i1 < i2 · · · < in and AQij

is ← Ajθj , PartRjθj when
Qj is ← PartLj , Aj , PartRj for each j ∈ [1, n] and each θi substitutes dummy
constants for some variables occurring only in input positions of Aj , PartRj.
Proof : Induction on n.

Basis: n = 1. Let Q1 be ← PartL1, A1, PartR1. We obtain an input-consuming
LD-derivation AQ1, · · · , AQi1 of Paug∪{Q1} by resolving all the atoms in PartL1

with dummy unit clauses. This is possible because Q1 is simply-moded and all
the output terms in it are distinct variables and hence atoms in PartL1 unify
with dummy clauses containing constants in output positions. Obviously, AQi1

is ← A1θ1, PartR1θ1, where θ1 is a substitution replacing output variables in
PartL1 by dummy constants. Theses variables occur only in input positions of
A1, PartR1, since Q1 is simply-moded.

Induction step: Assuming that the theorem holds for n = k, we prove that it
holds for n = k + 1.

By induction hypothesis, AQik
is ← Akθk, PartRkθk, and Qk is ← PartLk,

Ak, PartRk. Let H ← Body be the input clause resolved with Ak and σ be the
mgu that does not bind input variables of Ak. Now, Qk+1 is ← PartLk, Bodyσ,
PartRkσ and can be written as ← PartLk+1, Ak+1, PartRk+1 such that1 Ak+1

is in Bodyσ or PartRkσ.

1 Here, we restrict our attention to input-consuming derivations in which no atom is
selected after one of its right neighbors has been selected, taking advantage of the
left switching lemma proved in [6].

M.R.K. Krishna Rao

Input-Termination of Logic Programs 227

We extend the input-consuming LD-derivation AQ1, · · · , AQik
of Paug∪{Q1}

by resolving Akθk with the above input clause. It is easy to see that the mgu
is σθk and AQik+1 is ← Bodyσθk, PartRkθkσ. Since the domain of σ is output
variable and that of θk is input variables, σθk = θkσ and AQik+1 can be written
as ← Bodyσθk, PartRkσθk. As Ak+1 is in Bodyσ or PartRkσ, it is clear that
Ak+1θk is in AQik+1.

Since Paug and Q1 are simply-moded, every query in any derivation of Paug∪
{Q1} is simply-moded and the output terms are distinct variables, making it
possible to resolve any atom with a dummy clause. We further extend the
input-consuming LD-derivation of AQ1, · · · , AQik

, AQik+1 of Paug ∪ {Q1} to
AQ1, · · · , AQik

, AQik+1, · · · , AQik+1 by resolving all the atoms on the left of
Ak+1θk with dummy clauses and get AQk+1 =← Ak+1θk+1, PartRk+1θk+1. �

The following example demonstrates the need for dummy clauses.

Example 6. Consider append program with moding: app(in,in, out) and a
simply-moded query ← app(X, [1, 2, 3], Y), app([1, 2, 3], Y, Z). There is no input-
consuming LD-derivation for this query (because the leftmost atom is not in-
stantiated enough). However, we have an input-consuming derivation of length
4 for this query when we select the rightmost atom.

When we add dummy clause app(X, Y, 01) ←, we get an input-consuming
LD-derivation of length 5 for the above query. �

Now, we are in a position to prove the main theorem of the paper.

Theorem 9. Let P be a linear bounded simply-moded program and Q be a
simply-moded query. Then, all the input-consuming derivations of P ∪ {Q} are
of finite length.
Proof : By the above theorem, if P ∪{Q} has an infinite input-consuming deriva-
tion it Paug ∪ {Q} has an infinite input-consuming LD-derivation. However, by
Theorem 6, all the input-consuming LD-derivations of Paug ∪ {Q} are of finite
length as Paug is a linear bounded program. �

The following example shows that this result does not hold for the whole
class of linear bounded programs.

Example 7. Consider the program obtained by replacing the last clause of
quick-sort by the following 3 clauses (with moding doub(in, out) for the
new predicate).

qs([H|L], S) ← part(L, H, A, B), doub([H|L], A), qs(A, A1), qs(B, B1),
app(A1, [H|B1], S)

doub([], []) ←
doub([H|L], [H, H|R]) ← doub(L, R)

Note that, this program is not simply-moded (variable A occurs twice in output
positions).

228

This program is linear bounded w.r.t. I and O such that I(p) = in(p) and
O(p) = out(p) for each predicate except that I(part) = {1} and O(doub) =
∅. However, it has an infinite input-consuming derivation starting from query
← qs([1], X), in which partition atoms are never selected, but double and
quick-sort atoms are selected. This infinite derivation has recursive atoms
qs([1], X), qs([1, 1], A), qs([1, 1, 1, 1], A′), · · · selected.

Note that this program is input-terminating under Prolog’s selection rule
because part(L,H,A,B), doub([H|L], A) will never succeed. �

The class of linear bounded programs is rich enough to include many pro-
grams like append, delete, insert, reverse, permute, count, listsum, listproduct,
insertion-sort, quick-sort on lists, various tree traversal programs and addition,
multiplication, factorial, power on natural numbers. One little surprise is that
the following merge-sort is not linear bounded. However a specialized version of
it is linear bounded.

Example 8. Consider the following program for merge-sort.

moding: split (in, out, out); merge (in, in, out) and
ms (in, out)

split([], [], []) ←
split([X|Xs], [X|As], Bs) ← split(Xs, Bs, As)

merge([], Ys, Ys) ←
merge(Xs, [], Xs) ←
merge([X|Xs], [Y|Ys], [X|Zs]) ← X ≤ Y, merge(Xs, [Y|Ys], Zs)
merge([X|Xs], [Y|Ys], [Y|Zs]) ← X > Y, merge([X|Xs], Ys, Zs)

ms([], []) ←
ms([X], [X]) ←
ms([X1, X2|L], S) ← split([X1, X2|L], A, B), ms(A, A1), ms(B, B1),

merge(A1, B1, S)

Subprograms defining split and merge are linear bounded w.r.t. I and O such
that I(p) = in(p) and O(p) = out(p) for each predicate. However, we cannot
prove that ms is linear bounded because 2 + X1 + X2 + L ≥ A + B does not
imply 2 + X1 + X2 + L > A and 2 + X1 + X2 + L > B for recursive atoms
ms(A,A1), ms(B,B1). �

This is the price we pay for having a definition which is purely syntactic.
However, purely syntactic definitions have many advantages, like decidability in
our case. The following specialized version of merge-sort is linear bounded.

Example 9. Consider the program for merge-sort obtained by replacing the
last clause with the following.

ms([X1, X2|L], S) ← split(L, A, B), ms([X1|A], A1), ms([X2|B], B1),
merge(A1, B1, S)

M.R.K. Krishna Rao

Input-Termination of Logic Programs 229

This program is linear bounded as the inequality LI(split(L, A, B), I, O), i.e.,
L ≥ A+B implies 2+X1+X2+L > 1+X1+A and 2+X1+X2+L > 1+X2+B
for the two recursive atoms ms(A,A1), ms(B,B1). �

5.1 Comparison with Related Works

Bossi, Rossi and Etalle [6] defined classes of quasi recurrent and input-recursive
programs and proved the following theorem on input termination.

Theorem 10. A simply-moded input-recursive program is input terminating if
and only if it is quasi recurrent.

The main restriction in these programs is that (mutual) recursive atoms
cannot have any local variables in input positions. Many programs like quick-
sort do not satisfy this requirement.

The relation between Theorems 9 and 10 is similar to the between Theorems 6
and 7. Theorem 9 is applicable to a much wider class of programs than Theorem
10. The membership problem of the class of linear bounded programs is decid-
able, while that of the class of quasi recurrent programs is undecidable. Theorem
10 gives a necessary and sufficient condition for input termination (albiet for a
small class of programs) while Theorem 9 gives only a necessary condition for
input termination.

6 Conclusion

In this paper, we study input termination of logic programs. We introduce a
class of logic programs called linear bounded programs and prove that linear
bounded programs only have input-consuming derivations of finite length under
Prolog’s selection rule. The result also holds for arbitrary selection rules if we
consider simply-moded linear bounded programs. Further,

1. the class of linear bounded programs is rich enough to include many natural
programs like append, delete, insert, reverse, permute, count, listsum, list-
product, insertion-sort, quick-sort on lists, various tree traversal programs
and addition, multiplication, factorial, power on natural numbers, and

2. it is decidable whether a given logic program is linear bounded or not,
3. the notion of linear bounded programs uses very simple concepts like mod-

ing and linear inequalities, and does not involve types, level mappings and
models.

This combination of simplicity, expressive power and decidability makes the class
of linear bounded programs very appealing.

Acknowledgement: The author would like to sincerely thank Danny De Schr-
eye for his helpful comments on the paper.

230

References

1. K. R. Apt. 1990. Introduction to Logic Programming. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, pages 495-574.

2. K. R. Apt and I. Luitjes. 1995. Verification of logic programs with delay declara-
tions. Proc. of AMAST’95, LNCS 936, 66-90. Springer-Verlag.

3. K. R. Apt and D. Pedreschi. 1993. Reasoning about termination of pure prolog
programs. Information and Computation 106, 109-157.

4. M. Bezem. 1992. Characterizing termination of logic programs with level mappings.
Journal of Logic Programming 15, 1/2, 79-98.

5. A. Bossi, N. Cocco, and M. Fabris. 1994. Norms on Terms and their use in Proving
Universal Termination of a Logic Program. Theoretical Computer Science 124:297-
328.

6. A. Bossi, S. Etalle, and S. Rossi. 2002. Properties of input-consuming derivations.
Theory and Practice of Logic Programming, 2, 125-154.

7. A. Bossi, S. Etalle, S. Rossi, and J.G. Smaus. 2004. Termination of simply-moded
logic programs with dynamic scheduling. ACM Trans. Comput. Log. 15(3):470-507.

8. S. K. Debray and D. S. Warren. 1988. Automatic mode inference for logic programs.
J. Logic Programming 5, pp. 207-229.

9. S. Decorte, D. De Schreye and M. Fabris. 1993. Automatic inference of norms: a
missing link in automatic termination analysis, ILPS’93, Lecture Notes in Com-
puter Science 526, pp. 420-436.

10. S. Decorte, D. De Schreye, and H. Vandecasteele. 1999. Constraint-based termina-
tion analysis of logic programs. ACM Trans. Program. Lang. Syst. 21(6):1137-1195.

11. D. De Schreye. 2004. Personal communication.
12. D. De Schreye and S. Decorte. 1994. Termination of logic programs: The never-

ending story. Journal of Logic Programming, 19/20:199-260.
13. S. Genaim, M. Codish, J. Gallagher, V. Lagoon. 2002. Combining Norms to Prove

Termination. VMCAI 2002, Lecture Notes in Computer Science 2294, pp. 126-138.
14. M.R.K. Krishna Rao, D. Kapur, R.K. Shyamasundar. 1998. Transformational

Methodology for Proving Termination of Logic Programs. Journal of Log. Pro-
gram. 34(1): 1-41.

15. N. lindenstrauss and Y. Sagiv. 1997. Automatic termination analysis of logic pro-
grams, ICLP’1997, pp. 63-77.

16. V. Lagoon, F. Mesnard, P. Stuckey. 2003. Termination Analysis with Types Is
More Accurate. ICLP 2003, Lecture Notes in Computer Science 2916, pp. 254-268.

17. J. W. Lloyd. 1987. Foundations of Logic Programming. SpringerVerlag.
18. F. Mesnard and S. Ruggieri. 2003. On proving left termination of constraint logic

programs. ACM Transactions on Computational Logic, 4(2):1-26.
19. L. Plümer (1990), Termination proofs for logic programs, Ph. D. thesis, University

of Dortmund, Also appeared as Lecture Notes in Computer Science 446, Springer-
Verlag.

20. J.-G. Smaus. 1999. Proving termination of input-consuming logic programs. Proc.
of ICLP’99, pp. 335-349.

21. J.-G. Smaus, P.M. Hill, A. King: 2001. Verifying Termination and Error-Freedom
of Logic Programs with block Declarations. Theory and Practice of Logic Program-
ming 1(4): 447-486.

22. K. Verschaetse and D. De Schreye. 1991. Deriving Termination Proofs for Logic
Programs, Using Abstract Procedures. Proc. of ICLP’91, pp. 301-315.

M.R.K. Krishna Rao

On Termination of Binary CLP Programs

Alexander Serebrenik1 and Fred Mesnard2

1 Laboratory of Quality of Software (LaQuSo), T.U.Eindhoven,
HG 5.71, Den Dolech 2, P.O.Box 513,
5600 MB Eindhoven, The Netherlands

A.Serebrenik@laquso.com
2 IREMIA, Université de La Réunion, France

fred@univ-reunion.fr

Abstract. Termination of binary CLP programs has recently become
an important question in the termination analysis community. The rea-
son for this is due to the fact that some of the recent approaches to
termination of logic programs abstract the input program to a binary
CLP program and conclude termination of the input program from ter-
mination of the abstracted program. In this paper we introduce a class
of binary CLP programs such that their termination can be proved by
using linear level mappings. We show that membership to this class is
decidable and present a decision procedure. Further, we extend this class
to programs such that their termination proofs require a combination of
linear functions. In particular we consider as level mappings tuples of
linear functions and piecewise linear functions.

1 Introduction

Termination is well-known to be one of the crucial properties of software veri-
fication. Logic programming with its strong theoretical basis lends itself easily
to termination analysis as witnessed by a very intensive research in the area.
Some of the recent approaches to termination [4, 10, 13] proceed in two steps.
First, a logic program is abstracted to a CLP(N)-program, i.e. logic program
extended with constraint solving over the domain of natural numbers N . Second,
the CLP(N)-program is approximated by a binary CLP(N) program, i.e., a set
of clauses of the form p(x̃) ← c, q(ỹ), where c is a CLP-constraint and p, q are
user-defined predicates.

In this paper we study decidability of termination for binary CLP(C) pro-
grams. In general, it depends on the constraint domain C. On the one hand,
Devienne et al. [6] have established undecidability of termination for one-clause
binary CLP(H) programs, where H is the domain of Herbrand terms. Similar
results can be obtained for other CLP languages such as CLP(N) and CLP(Q).
On the other hand, Datalog, i.e., logic programming language with no function
symbols, provides an example of a constraint programming language such that
termination is decidable for it.

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 231–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

232 A. Serebrenik and F. Mesnard

For constraint domains with the undecidable termination property, we are
interested in subclasses of binary programs such that termination is decidable
for these subclasses. A trivial example of such a subclass is the subclass of
non-recursive binary programs. After the preliminary remarks of Section 2, in
Section 3 we present our main result, namely a non-trivial subclass of terminating
binary CLP(C) programs such that membership to this subclass is decidable if
C is Q, Q+ or R. Intuitively, this is the class of binary CLP programs such
that there exists a linear function decreasing while traversing the clauses. Two
extensions of this class are discussed in Section 4.

2 Preliminaries

2.1 Constraint Logic Programming

We adhere to the definitions of [8]. For sake of completeness we recapitulate them
briefly. A constraint domain C is a tuple (ΣC ,LC ,DC , TC , solvC). The domain
signature ΣC is a pair (FC ,ΠC), where FC is the set of function symbols and ΠC
is the set of predicate symbols. The class of constraints LC is a set of first order
formulae closed under conjunction and existential quantification. The domain of
computation DC is the intended interpretation of constraints over a set DC . The
constraint theory TC describes the logical semantics of the constraints. Finally,
the constraint solver solvC maps each formula in LC to {true, false,unknown},
such that for any c ∈ LC , solvC(c) = false implies TC |= ¬∃c, and solvC(c) = true
implies TC |= ∃c. A constraint solver is called complete if it only returns true or
false. A constraint domain with a complete solver is called ideal. A constraint
logic programming language over an ideal domain is also called ideal.

We consider the following ideal constraint domains:

– N . The predicate symbols are = and ≥, the function symbols are 0, 1, and +.
The constraint theory TN is the theory of Presburger arithmetic, known to
be decidable. It should be noted that constraints produced by the abstraction
techniques of [4, 10, 13] can be expressed in Presburger arithmetic.

– Q and R. The predicate symbols are as above, the function symbols are 0,
1, +, −, ∗, and /, however only linear constraints are admitted. Q+ and R+

restrict Q and R to non-negative numbers.

Given a program P , we define ΠP as the set of user-defined predicate symbols
appearing in P . Syntactic objects are viewed modulo renaming of variables. In
this paper we restrict our attention to binary programs. We assume that binary
rules are in flat form: p(x̃) ← c, q(ỹ), with x̃∩ ỹ = ∅ (where ∅ denotes the empty
set and x̃ a tuple of distinct variables). Flat facts and flat queries are defined
accordingly. An atomic query is a flat query of the form c, q(ỹ) where q ∈ ΠP .

A C-interpretation for a CLP(C) program P is an interpretation on the do-
main signature (FC ,ΠC ∪ΠP) that agrees with the domain of computation DC
on the interpretation of the symbols in ΣC . Given a CLP(C)-program P , the
C-base BC

P is defined as {p(d1, . . . , dn) | p ∈ ΠP , (d1, . . . , dn) ∈ (DC)n}. A C-

On Termination of Binary CLP Programs 233

interpretation can be regarded as a subset of the C-base. A C-model of a program
P is a C-interpretation of P that is also a model of P .

A valuation θ is a function that maps all variables to DC . For an interpretation
J and a formula ϕ we write J |=θ ϕ if θ(ϕ) is valid with respect to J . For a query
Q of the form (c, A), we define groundC(Q) = {θ(A)|DC |=θ c}. For a rule, we
define groundC((A ← c,B)) = {θ(A ← B)|DC |=θ c}. Similarly, for a program
P , groundC(P) is the set of ground C-instances of the rules of P .

2.2 Termination Analysis

In this subsection we present briefly a number of notions related to termination
analysis. First of all, we say that a CLP(C) program P and a query Q left-
terminate if every derivation of Q with respect to P via the leftmost selection
rule is finite.

One key concept in many (theoretical) approaches lies in the use of level
mappings, i.e., mappings from ground atoms to natural numbers. We slightly
extend this traditional definition and map the elements of the C-base to a well-
founded set. We prefer to talk about a general well-founded set rather than
about the set of the naturals, in order to be able to consider functions to R+

and (R+)m. Recall that a well-founded set is a partially ordered set (S,�) such
that there is no infinitely decreasing chain s1�s2�. . . of elements of S. Formally,
a level mapping for a constraint domain C is a function | · | : C-base → S. It is
well-known that termination of a CLP program can be characterised by means
of level mappings. The following definition is taken from [14].

Definition 1. Let | · | : C-base → S be a level mapping, and I be a C-interpreta-
tion. A CLP(C) program P is acceptable by | · | and I if I is a C-model of P ,
and for every A ← B1, . . . , Bn in groundC(P), for i ∈ [1, n], I |= B1, . . . , Bi−1

implies |A| � |Bi|. A query Q is acceptable by | · | and I if there exists k ∈ S
such that for every A1, . . . , An in groundC(Q), for i ∈ [1, n], I |= A1, . . . , Ai−1

implies k � |Ai|.

For binary programs and atomic queries, model and queries can be eliminated
from the previous definition (see Lemma 1 and Proposition 1). By doing so we
can obtain a notion similar to recurrency. Originally the notion of recurrency
has been introduced in [1] to characterise termination of ground queries to logic
programs for all selection rules. For constraint logic programming we introduce
the following definition:

Definition 2. Let P be a binary CLP(C) program, and | · | : C-base → S be a
level mapping. P is called recurrent with respect to | · | if for every A ← B ∈
groundC(P), |A|� |B| holds.

The following lemma states that for binary programs the notions of accept-
ability and recurrency coincide.

Lemma 1. Let P be a binary CLP(C) program and | · | : C-base → S be a level
mapping. Then, P is acceptable by |·| and the C-base if and only if P is recurrent
with respect to | · |.

234 A. Serebrenik and F. Mesnard

The relationship between acceptability and termination for ideal CLP lan-
guages can be expressed by the following theorems:

Theorem 1. ([14]) Let CLP(C) be an ideal CLP language. If a program P and
a query Q are both acceptable by some level mapping | · | and a C-model I then
they left terminate.

From here on we consider only ideal constraint logic programming languages.
This assumption is quite common in termination analysis for CLP. For binary
programs one can use Lemma 1 and replace acceptability with respect to a level
mapping and a model by recurrency with respect to a level mapping.

Observe that we do not need to introduce the corresponding notion of re-
currency for queries. Instead, in order to take care of the atomic query Q we
extend the corresponding binary program P by a clause q ← Q, where q is a
fresh predicate symbol, i.e., q ∈ ΠP , q ∈ ΠC . The basic idea is that recurrency of
P ∪{q ← Q} implies termination of Q with respect to P . Formally, the following
proposition holds.

Proposition 1. Let P be a binary CLP(C) program, Q be an atomic query, and
q be a fresh predicate symbol as above. If P ∪ {q ← Q} is recurrent with respect
to a level mapping | · | then Q terminates with respect to P .

2.3 Linear Programming

In this subsection we recall briefly some basic notions of linear programming
(see [16] for instance) to be applied in Section 3.1. Essentially, linear program-
ming aims at finding the extremum of a linear function of positive numbers, so
called the objective function, given that a system of linear inequalities on these
variables holds. Formally, a minimising linear programming problem can be ex-
pressed as follows: minimise c̃x̃T subject to Ax̃T ≥ b̃T and x̃ ≥ 0, where x̃ is a
vector of variables, c̃ expresses the objective function, the superscript T denotes
a transposed of a vector, and Ax̃T ≥ b̃T denotes the system of linear constraints.
For every minimising linear programming problem over the rationals or the reals,
there exists a maximising linear programming problem, called dual, such that an
optimal solution to one problem ensures the existence of an optimal solution to
the other and that the optimal values of the objective functions are equal. This
statement is known as the duality theorem. Given a minimising linear program-
ming problem as above, the dual linear programming problem has the following
form: maximise ỹb̃T subject to ỹAT ≤ c̃ and ỹ ≥ 0.

3 Llm-Recurrent Programs

In this section we consider a special subclass of binary programs and atomic
queries. In particular, we are interested in programs and queries that can be
analysed by means of linear level mappings. Let C be N or Z or Q+ or Q or
R. As a range for a level mapping in this section we take (R+,�), where x � y
holds if x ≥ y + 1.

On Termination of Binary CLP Programs 235

Definition 3. A level mapping | · |: C-base → R+ is called linear if for any
n-ary predicate symbol p, there exist real numbers μi

p, 0 ≤ i ≤ n, such that for
any atom p(e1, . . . , en) ∈ C-base, |p(e1, . . . , en)| = max(0, μ0

p +
∑n

i=1 μ
i
pei).

Using the notion of a linear level mapping we can define the class of programs
we are going to study.

Definition 4. Let P be a binary flat CLP(C) program. We say that P is llm-
recurrent if there exists a linear level mapping | · | such that P is recurrent with
respect to it.

Example 1. Consider the following program: p(X) ← X ≤ 72, Y = X + 1, p(Y).
This program is llm-recurrent with respect to |p(x)| = max(0, 73− x). �

In the next subsection we quickly review the algorithm of Sohn and Van
Gelder [18] that aims at checking the existence of a linear level mapping such
that P is llm-recurrent with respect to it. This will allow us to show that llm-
recurrency is decidable for Q and R.

3.1 The Algorithm SVG

Sohn and Van Gelder [18] have proposed the following algorithm (SVG) as a
sufficient condition for termination. SVG examines each recursive user-defined
predicate symbol p of a CLP(Q+) program in turn (the precise order does not
matter) and try to find a level mapping for p(x1, . . . , xn) symbolically defined
as |p(x̃)| = μ0 +

∑
1≤i≤n μixi where μi ≥ 0 for all i. For sake of simplicity, we

assume that the program is only directly recursive. By this we mean that if there
exist sequences of predicates p = r0, r1, . . . , rn = q and q = rn, rn+1, . . . , rm = p
such that for all i, ri(x̃) ← c(x̃, ỹ), ri+1(ỹ) is a clause in P , then p is identical to
q. Moreover, we may safely ignore the constant μ0.

For every rule r, say p(x̃0) ← c, p(x̃k), we assume that the constraint c is
satisfiable, already projected onto x̃0 ∪ x̃k, only contains inequalities of the form
e1 ≥ e2, with e1 and e2 being arithmetical expressions over x̃0∪x̃k and constants.
For such a rule recurrency requires that c implies

∑
1≤i≤n μix

0
i −
∑

1≤i≤n μix
k
i ≥

1, where x̃0 is the vector (x0
1, . . . , x

0
n) and x̃k is the vector (xk

1 , . . . , x
k
n). In other

words, such a binary rule gives rise to the following pseudo1 linear programming
problem

minimise θ = μ̃(x̃0 − x̃k) subject to c, x̃0 ≥ 0, x̃k ≥ 0 (1)

where μ̃ is the vector (μ1, . . . , μn). A level mapping | · | ensuring recurrency exists
(at least for this clause) if θ∗ ≥ 1 where θ∗ denotes the minimum of the objective
function. Because of the symbolic constants μ̃, (1) is not a linear programming
problem. The idea of Sohn and Van Gelder is to consider its dual form:

maximise η = βỹ subject to Aỹ ≤ (μ1, . . . , μn,−μ1, . . . ,−μn), ỹ ≥ 0 (2)

1 because symbolic parameters appear in the objective function.

236 A. Serebrenik and F. Mesnard

where β and A are automatically derived while switching to the dual form of
(1) and ỹ is the vector of dual variables. By the duality theorem of linear pro-
gramming, we have θ∗ = η∗. Now, the authors observe that μ̃ appears linearly
in the dual problem (it is not true for (1)) because no μi appears in A. Hence
the constraints of (2) can be rewritten, by adding η ≥ 1, ỹ ≥ 0, as a set of
linear inequations, denoted Sr. If the conjunction Sp = ∧kSr (for each clause
defining p) is satisfiable, then there exists a linear level mapping for p ensuring
recurrency.

Example 2. We consider the CLP(Q+) program P :

p(X1, X2) ← X1 + 2 ∗ X2 ≥ 3 ∗ X3 + 4 ∗ X4 + 1, p(X3, X4).

The first step is the pseudo-linear program: minimise θ = a(x1 − x3) + b(x2 −
x4) subject to x1, x2, x3, x4 ≥ 0, x1 + 2x2 ≥ 3x3 + 4x4 + 1. We get: minimise
θ = [a b −a −b] [x1 x2 x3 x4]

T subject to A [x1 x2 x3 x4]
T ≥ [0 0 0 1]T , where

A is

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 2 −3 −4

⎤
⎥⎥⎥⎥⎦. The dual form is: maximise η = [0 0 0 0 1] [y1 y2 y3 y4 y5]

T

subject to AT [y1 y2 y3 y4 y5]
T ≤ [a b −a −b]T and y1, y2, y3, y4, y5 ≥ 0. The

parameters a and b now appear linearly, they will be considered as new vari-
ables and we have: maximise η = [0 0 0 0 1 0 0] [y1 y2 y3 y4 y5 a b]T subject to

⎡
⎢⎢⎣

1 0 0 0 1 −1 0
0 1 0 0 2 0 −1
0 0 1 0 −3 1 0
0 0 0 1 −4 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

a
b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ and y1, y2, y3, y4, y5, a, b ≥ 0. As the system

Sp (where η = y5): ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y5 ≥ 1
y1 + y5 − a ≤ 0
y2 + 2y5 − b ≤ 0
y3 − 3y5 + a ≤ 0
y4 − 4y5 + b ≤ 0
y1, y2, y3, y4, y5, a, b ≥ 0

is satisfiable, we conclude that there exists a linear level mapping ensuring re-
currency of P . �

So SVG is basically an efficient procedure for deciding in R (or any other
domain such that the duality theorem holds for it) the formula ∃μ̃ ∀x̃∪ỹ[c(x̃, ỹ) →
μ̃x̃ ≥ 1 + μ̃ỹ] corresponding to the rule p(x̃) ← c(x̃, ỹ), p(ỹ). It produces a
linear constraint (the system Sp in our example) such that satisfiability of this
constraint is equivalent to a positive answer for the decision problem.

On Termination of Binary CLP Programs 237

3.2 Verifying llm-Recurrency with SVG

To prove llm-recurrency, we need to find a function satisfying Definition 3, i.e.,
for every predicate p we are looking for a vector μ̃p, such that max(0, μ0

p +∑n
i=1 μ

i
pei) decreases while traversing the rules. Hence, we extend SVG to decide

the existence of μ̃ such that for each renamed apart rule p(x̃) ← c(x̃, ỹ), q(ỹ) ∈ P ,
we have: ∀x̃∪ỹ {c(x̃, ỹ) → [μ̃px̃ ≥ 1+μ̃q ỹ∧μ̃q ỹ ≥ 0]}. We compute the equivalent
constraint corresponding to each rule, and satisfiability of their conjunction is
equivalent to llm-recurrency.

Note that for a ground atom p(ẽ) we may have μ̃pẽ < 0. But as |p(ẽ)| is defined
by max(0, μ̃pẽ), we have |p(ẽ)| = 0. Observe also that μ̃pẽ < 0 may hold only
for atoms p(ẽ) such that c(ẽ, ỹ) is unsatisfiable for all ỹ, i.e., atoms with com-
putation of depth 1. The explanation above justifies the following decidability
result.

Theorem 2. SVG is a decision procedure for llm-recurrency of binary con-
straint logic programs over Q+,Q and R.

Example 3. Example 2, continued. We need to find μp(x, y) = ax+ by such that

ax1 + bx2 ≥ ax3 + bx4 + 1 and ax3 + bx4 ≥ 0
subject to x1, x2, x3, x4 ≥ 0, x1 + 2x2 ≥ 3x3 + 4x4 + 1

One of such solutions is a = 1, b = 2 leading to the following linear level mapping
|p(x, y)| = max(0, x + 2y). Since constraints solving is done over Q+ we can
further simplify this definition to |p(x, y)| = x + 2y. �

Observe that although SVG is not necessarily complete for binary constraint
logic programs over N or Z, it is still a sound way to prove termination of
programs over these domains. Indeed, by considering a CLP(N) program as a
CLP(Q) program we enlarge the domain. Hence, if the program terminates over
Q it also terminates over N . The following example illustrates that the converse
is not necessarily true.

Example 4. Consider the program:

div2(X) ← X > 0, 2 ∗ Y = X, div2(Y).

The query X = 1, div2(X) terminates with respect to this program if constraint
solving is done over N or Z. This is clearly not the case for Q. �

To estimate the relative importance of this class of binary CLP(N) programs
we have considered a number of logic programming examples, abstracted them
and binarised as proposed in [4]. The class of llm-recurrent programs turned
out to be broad enough to include binary CLP(N) programs corresponding to
fluctuates, mergesort, queens, and rotate [2].

238 A. Serebrenik and F. Mesnard

4 Extending llm-Recurrency

In this section we present two extensions of the class of llm-recurrent programs.
Our first extension has been motivated by a local approach for termination [4, 11],
while the second one by the previous study of numerical computations [17].

4.1 Tuples of Linear Functions

The basic idea of our first extension is to consider tuples of linear level mappings.
In other words, a level mapping should map any ground atom to an m-tuple of
non-negative real numbers, where m is a fixed natural number. As above, we
need to guarantee that this set is well-founded. Hence, we combine linear level
mappings lexicographically. As a range for tuple-linear level mappings we choose
((R+)m,�), where x � y holds if x = (x1, . . . , xm), y = (y1, . . . , ym) and there
exists 1 ≤ i ≤ m such that for all j ∈ [1, i− 1], xj = yj and xi ≥ yi + 1.

Definition 5. A level mapping | · |m: C-base → ((R+)m,�) is called tuple-
linear if for any atom p(e1, . . . , en) ∈ C-base,

|p(e1, . . . , en)| = (max(0, μ(0,1)
p +

n∑
j=1

μ(j,1)
p ej), . . . ,max(0, μ(0,m)

p +
n∑

j=1

μ(j,m)
p ej))

where the coefficients μ
(j,i)
p are real numbers.

The order relation on tuples is given as the lexicographic order relationship
on R+. Similarly to the definition above we say that a program P is tuple llm-
recurrent if there exists a tuple-linear level mapping such that P is recurrent
with respect to it. Clearly, tuple llm-recurrency implies termination in the same
fashion as in Proposition 1.

Example 5. Consider the following binary CLP(Q+) program:

mul(, Z) ← Z = 0.

mul(N, M) ← N ≥ 0, M > 0, M1 = M− 1, mul aux(N, M1, M1).
mul aux(X, Y, Z) ← X > 0, Y > 0, X1 = X, Y1 = Y− 1, Z1 = Z,

mul aux(X1, Y1, Z1).
mul aux(X, Y, Z) ← X > 0, Y = 0, X1 = X− 1, Y1 = Z, Z1 = Z,

mul aux(X1, Y1, Z1).
mul aux(X, ,) ← X = 0.

This program is not llm-recurrent. Indeed, if it has been llm recurrent, the max-
imal depth of any derivation of mul(n, m) would be linear in n and m. However,
one can see that the maximal depth of such a computation depends on m ∗ n.

To show that the multiplication example is tuple llm-recurrent we use the
following level mapping: |mul(n, m)| = (n, m), |mul aux(x, y, z)| = (x, y). This

On Termination of Binary CLP Programs 239

level mapping is clearly tuple-linear. To prove the recurrency observe that the
following inequalities hold:

mul(n, m)	= (n, m) > (n, m− 1) =	mul aux(n, m1, m1)
mul aux(x, y, z)	= (x, y) > (x, y− 1) =	mul aux(x1, y1, z1)
mul aux(x, y, z)	= (x, y) > (x− 1, z) =	mul aux(x1, y1, z1)

An additional example of a program that is tuple llm-recurrent but not llm-
recurrent can be obtained by abstracting and binarising ackermann. �

Decidability of llm-recurrency implies:

Theorem 3. Tuple llm-recurrency is decidable for Q+, Q and R.

Proof. Observe that each function of the tuple should decrease at least for one
binary clause. Hence, let np be the number of binary clauses defining the pred-
icate symbol p, excluding facts. Then m is limited by max({np|p ∈ ΠP }). Let
μ1, . . . , μm be linear functions of the tuple. Then, for each rule p(x̃) ← c, p(ỹ)
with vars(c) ⊆ x̃ ∪ ỹ, the following should hold:

∀x̃ ∪ ỹ {c→ [μ1(x̃− ỹ) ≥ 1 ∧ μ1(ỹ) ≥ 0]} ∨
∀x̃ ∪ ỹ {c→ [μ1(x̃− ỹ) = 0 ∧ μ2(x̃− ỹ) ≥ 1 ∧ μ2(ỹ) ≥ 0]} ∨

. . .

∀x̃ ∪ ỹ {c→ [μ1(x̃− ỹ) = . . . = μm−1(x̃− ỹ) = 0 ∧ μm(x̃− ỹ) ≥ 1 ∧ μm(ỹ) ≥ 0]}

Each one of the disjuncts is similar to (1), i.e., can be decided by SVG. �

Similarly to the previous case while the method outlined above is not nec-
essarily complete for binary constraint logic programs over N or Z, it is still a
sound way to prove termination of programs over these domains.

4.2 Piecewise Linear Level Mappings

The second extension of the class of the llm recurrent programs has been moti-
vated by our previous study of termination of numerical computations [17]. We
have suggested to split the domain of an argument into pairwise disjoint cases,
called “adornments” and to specialise the program with respect to the adorn-
ments. Termination of the specialised program implies termination of the original
one. Moreover, this transformation technique allows us to infer a piecewise linear
level mapping proving termination of the original program.

Definition 6. A level mapping | · |: C-base → (R+,�) is called piecewise linear
if there exist linear level mappings | · |1, . . . , | · |n: C-base → (R+,�) such that
for all A ∈ C-base there exists i such that | A |=| A |i and if | A |= 0 this i is
unique.

240 A. Serebrenik and F. Mesnard

We can also write a piecewise level mapping | · | as follows:

|A| =

⎧⎪⎪⎨
⎪⎪⎩
|A|1, |A|1 = 0,
.
|A|n, |A|n = 0,
0, otherwise

To see that a piecewise linear level mapping generalises Definition 3 observe that
any linear level mapping is a piecewise linear level mapping for n = 1. A binary
CLP(C) program P is called piecewise llm recurrent if there exists a piecewise
linear level mapping such that P is recurrent with respect to it.

Unlike the results presented in Sections 3 and 4.1 at the moment it is not
known to us whether piecewise recurrency is decidable. However, we suggest a
technique that upon success allows us to prove piecewise recurrency (and hence,
termination). Moreover, this technique finds a piecewise level mapping such that
the program is recurrent with respect to it. We present the technique by means
of example. Consider the following CLP(N) program P :

q(X) ← X + X + Y = 50, q(Y).

We are interested in showing termination of S = {q(X)}.

1. First, we identify the reference points with respect to this clause. Refer-
ence points with respect to a clause p(x̃) ← c(x̃, ỹ), p(ỹ) are solutions of
c(x̃, ỹ), x̃ = ỹ. If there is no solution over N (Z) but there exists a solution
x̃0 over Q take 1x̃02. For our example, we need to solve x+x+y = 50, x = y
which does not have solutions over N but it has one solution over Q, namely
50
3 . Hence, we take 16 as the reference point.

2. The following step considers collecting the constraints and constructing the
adornments. The set of constraints C is defined as the union of the following
three sets of inequalities:
– set of x̃ ≤ x̃0 for every reference point of the form x̃0;
– projection of c(x̃, ỹ) on x̃, i.e., c′(x̃) such that c(x̃, ỹ) |= c′(x̃) and for

every c′′(x̃), if c(x̃, ỹ) |= c′′(x̃) then c′(x̃) |= c′′(x̃);
– if the domain is N , Q+ or R+, inequalities of the form x̃ ≥ 0.

In our case these sets are {X ≤ 16}, {X ≤ 25}, {X ≥ 0}, respectively. In
order to compute the set of adornments Aq we take all possible conjunctions
of the elements of C and their negations. For the running example after
simplifying the conjunctions, removing inconsistencies with respect toN and
replacing strict inequalities with the non-strict ones, we obtain {0 ≤ X ≤
16, 17 ≤ X ≤ 25, X ≥ 26}. For the sake of simplicity we denote elements of
this set {a, b, c}. In general, if a number of elements in C is k, the maximal
number of adornments is 2k. Note that k is expected to be small, so the size
of the set of adornments should not be problematic in practise.

3. Steps 3-8 have been inspired by the technique we used for numerical compu-
tations. Hence, here we present the steps briefly and refer to [17] for further
details and proofs. For each binary clause r in P add

∨
c∈Ap

c(x̃) before a

On Termination of Binary CLP Programs 241

call p(x̃) in the body of r. By the construction above the disjunction is true,
thus, the transformed program is equivalent to the original one. In our case,
the following program is obtained:

q(X) ← X + X + Y = 50, (0 ≤ Y ≤ 16 ∨ 17 ≤ Y ≤ 25 ∨ Y ≥ 26), q(Y).

4. For each clause, such that the head of the clause, say p(x̃), has a recursive
predicate p, add

∨
c∈Ap

c(x̃) as the first subgoal in its body. As for the previ-
ous step, the introduced call is equivalent to true, so that the transformation
is obviously correct:

q(X) ← (0 ≤ X ≤ 16 ∨ 17 ≤ X ≤ 25 ∨X ≥ 26),
X + X + Y = 50, (0 ≤ Y ≤ 16 ∨ 17 ≤ Y ≤ 25 ∨ Y ≥ 26), q(Y).

5. Next, moving to an alternative procedural interpretation of disjunction, for
each clause in which we introduced a disjunction in one of the previous two
steps, and for each such introduced disjunction we split these disjunctions,
introducing a separate clause for each disjunct. For our running example we
obtain 9 clauses. In general, every binary clause of the original program can
produce (2k)2 adorned clauses.
To prepare the next step in the transformation, note that, in the program
resulting from step 5, for each rule r and for each recursive predicate p:
– if a call p(x̃) occurs in r, it is immediately preceded by some adornment,
– if an atom p(x̃) occurs as the head of r, it is immediately followed by

some adornment.
Moreover, since the elements Ap partition the domain, conjuncts like ci(x̃),
p(x̃) and cj(x̃), p(x̃) for i = j, are mutually exclusive, as well as the analogous
initial parts of the rules. This means that we can now safely rename the
different cases apart.

6. Replace each occurrence of c(x̃), p(x̃) in the body of the clause with c(x̃),
pc(x̃) and each occurrence of a rule p(x̃) ← c(x̃), Q with the corresponding
rule pc(x̃) ← c(x̃), Q. Because of the arguments presented above the LD-
trees that exist for the given program and for the renamed program are
identical, except for the names of the predicates and for a number of failing
1-step derivations (due to entering clauses that fail in their guard in the
given program). As a result, both the semantics (up to renaming) and the
termination behaviour of the program are preserved.

7. Remove all rules p(x̃) ← c, . . . with an inconsistent constraint c. We get:

qa(X) ← 0 ≤ X ≤ 16, X + X + Y = 50, 17 ≤ Y ≤ 25, qb(Y).
qa(X) ← 0 ≤ X ≤ 16, X + X + Y = 50, 26 ≤ Y, qc(Y).
qb(X) ← 17 ≤ X ≤ 25, X + X + Y = 50, 0 ≤ Y ≤ 16, qa(Y).

which is the adorned program, P a.
8. Next we need to prove termination of the adorned program with respect to the

set of adorned queries Sa = {0 ≤ X ≤ 16, qa(X)} ∪ {17 ≤ X ≤ 25, qb(X)}
∪{X ≥ 26, qc(X)}.Observe that for every adornment c, pc(e1, . . . , en) is called

242 A. Serebrenik and F. Mesnard

in a computation of a query in Sa with respect to P a if and only if p(e1, . . . , en)
is called in a computation of the corresponding query in S with respect to P ,
and c holds for e1, . . . , en. In our particular case termination can be proved by
applying SVG. The following is one of the level mappings obtained.

|qa(x)|a =
{

3x + 50 0 ≤ x ≤ 16,
0 otherwise

|qb(x)|b =
{

150− 3x, 17 ≤ x ≤ 25,
0 otherwise

|qc(x)|c = 0

9. Finally, we combine the linear level mappings found to obtain a piecewise
linear level mapping. In our running example we can write the resulting level
mapping as

|q(x)| =

⎧⎨
⎩

3x + 50 0 ≤ x ≤ 16
150− 3x 17 ≤ x ≤ 25
0 x ≥ 26

Since this level-mapping exists we conclude termination of our CLP(N) pro-
gram for all queries c, q(X). This would not be the case if a different con-
straint domain such as Q have been considered.

Correctness of this transformation follows from [17]:

Theorem 4. Let P be a binary CLP program, S be a set of atomic CLP-queries,
P a and Sa the adorned program and the set of adorned queries, respectively.
Then, all queries in S terminate with respect to P if and only if all queries in
Sa terminate with respect to P a.

5 Conclusion

We have identified a class of CLP programs such that a linear level mapping is
sufficient to prove their termination. We have seen that membership to this class
is decidable and suggested a decision technique. We have further extended this
class by considering tuples of linear functions. We have seen that membership to
this class is also decidable. Finally, we have discussed piecewise level mappings.

The basic idea of identifying decidable and undecidable subsets of logic pro-
grams goes back to [5, 6, 15]. We generalise the class of programs considered to
constraint logic programming (recall that logic programming can be seen as con-
straint logic programming over the domain of Herbrand terms). The restriction
we pose is not syntactic. We have seen that llm-recurrency is a decidable con-
dition sufficient for termination for all the domains considered. This condition
can be automatically verified by cTI [13].

The idea of using mappings to domains more general than the natural num-
bers originated in early works on termination analysis [7, 9]. Tuple llm recur-
rency condition can be seen as a particular instance of this framework. Us-
ing tuples has been motivated by [4, 11] that do not compare sizes of atoms

On Termination of Binary CLP Programs 243

but sizes of arguments of these atoms. In [4, 11] a local approach to termina-
tion has been suggested, i.e. termination proof was based on a (locally veri-
fied) property of the computation abstraction. We follow a global approach to
termination, i.e., require the existence of a function (level mapping) decreas-
ing along all possible computation paths. In their study of the relationship
between local approaches and global approaches Codish and Genaim [3] have
proposed an efficient technique that can be seen as an indirect way to prove tu-
ple llm recurrency. Following important differences with our work should be
stressed. First, Codish and Genaim consider a subclass of binary programs,
so called binary unfoldings, i.e., sets of binary clauses closed under composi-
tion. Second, as basic components of a tuple we use affine functions of sizes
of arguments, while [3] is limited to the sizes themselves. The latter restric-
tion does not allow to analyse bounded-increase examples such as Example 1.
Finally, in order for the technique to be applicable, binary clauses are fur-
ther restricted only to contain inequalities between the same argument
positions.

A related technique of using two level-mappings has been recently investi-
gated in [12]. The main difference is that Martin and King use the two level
mappings separately for two different goals, i.e. proving decrease and bounded-
ness, while we use a lexicographic combination of level mappings to achieve both
goals at the same time.

The adornments method presented above has been first presented in context
of the numerical computations [17] and in its turn is related to the previous
work on splitting predicates [18]. This technique can be seen as a variant of
multiple specialisation [19]. However, to the best of our knowledge none of the
existing specialisation tools considered constraint logic programming.

A number of interesting questions are considered as future work. First of all,
we would like to understand whether the adornments technique is complete for
piecewise llm recurrent programs. On a more practical side, we would like to
implement these extensions in the termination analyser cTI [13] and evaluate
our approach experimentally.

References

1. K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,
9(3/4):335–364, 1991.

2. M. Codish. TerminWeb. Collection of benchmarks available at: http://lvs.cs.
bgu.ac.il/∼mcodish/suexec/terminweb/bin/terminweb.cgi?command=examples.

3. M. Codish and S. Genaim. Proving termination one loop at a time. In A. Serebrenik
and F. Mesnard, editors. Proceedings of the 13th International Workshop on Logic
Programming Environments, Technical report CW 371, Department of Computer
Science, K.U.Leuven, pages 48–59, 2003.

4. M. Codish and C. Taboch. A semantic basis for termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

5. D. De Schreye, K. Verschaetse, and M. Bruynooghe. A practical technique for
detecting non-terminating queries for a restricted class of Horn clauses, using di-

244 A. Serebrenik and F. Mesnard

rected, weighted graphs. In D. H. Warren and P. Szeredi, editors, Logic Program-
ming, Proceedings of the Seventh International Conference, pages 649–663. MIT
Press, 1990.

6. P. Devienne, P. Lebègue, and J.-C. Routier. Halting problem of one binary horn
clause is undecidable. In P. Enjalbert, A. Finkel, and K. W. Wagner, editors,
STACS 93, 10th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Proceedings., volume 665 of Lecture Notes in Computer Science, pages 48–57.
Springer Verlag, 1993.

7. R. W. Floyd. Assigning meanings to programs. In J. Schwartz, editor, Mathematical
Aspects of Computer Science, pages 19–32. American Mathematical Society, 1967.
Proceedings of Symposium in Applied Mathematics; v. 19.

8. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of
Logic Programming, 19/20:503–582, May/July 1994.

9. S. Katz and Z. Manna. A closer look at termination. Acta Informatica, 5:333–352,
1975.

10. V. Lagoon, F. Mesnard, and P. J. Stuckey. Termination analysis with types is
more accurate. In C. Palamidessi, editor, Logic Programming, 19th International
Conference on Logic Programming, pages 254–269. Springer Verlag, 2003.

11. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.
In L. Naish, editor, Proceedings of the Fourteenth International Conference on
Logic Programming, pages 63–77. MIT Press, July 1997.

12. J. C. Martin and A. King. On the inference of natural level mappings. In
M. Bruynooghe and K.-K. Lau, editors, Program Development in Computational
Logic, volume 3049 of Lecture Notes in Computer Science. Springer Verlag, 2004.

13. F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. In P. Cousot, editor, Static Analysis, 8th
International Symposium, SAS 2001, volume 2126 of Lecture Notes in Computer
Science, pages 93–110. Springer Verlag, 2001.

14. F. Mesnard and S. Ruggieri. On proving left termination of constraint logic pro-
grams. ACM Transaction on Computational Logic, 4(2):207–259, 2003.

15. S. Ruggieri. Decidability of logic program semantics and applications to testing.
Journal of Logic Programming, 46(1–2):103–137, November/December 2000.

16. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
17. A. Serebrenik and D. De Schreye. Inference of termination conditions for numerical

loops in Prolog. Theory and Practice of Logic Programming, 2004. to appear.
18. K. Sohn and A. Van Gelder. Termination detection in logic programs using argu-

ment sizes. In Proceedings of the Tenth ACM SIGACT-SIGART-SIGMOD Sym-
posium on Principles of Database Systems, pages 216–226. ACM Press, 1991.

19. W. Winsborough. Multiple specialization using minimal-function graph semantics.
Journal of Logic Programming, 13(2/3):259–290, 1992.

From Natural Semantics to Abstract Machines

Mads Sig Ager

BRICS�

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

mads@brics.dk

Abstract. We describe how to construct correct abstract machines from
the class of L-attributed natural semantics introduced by Ibraheem and
Schmidt at HOOTS 1997. The construction produces stack-based ab-
stract machines where the stack contains evaluation contexts. It is defined
directly on the natural semantics rules. We formalize it as an extraction
algorithm and we prove that the algorithm produces abstract machines
that are equivalent to the original natural semantics. We illustrate the
algorithm by extracting abstract machines from natural semantics for
call-by-value and call-by-name evaluation of lambda terms.

1 Introduction

Abstract machines have been widely used in the implementation of program-
ming languages [8]. Most of them have been invented from scratch and subse-
quently been proved to correctly implement the specification of a programming
language [12]. Some of them have been derived from the specification of a pro-
gramming language using some formal system [11, 18]. Most of these derivations
use ad hoc derivation steps and are fairly complicated.

In this work we present a simple approach to the construction of correct
abstract machines from natural semantics descriptions. At HOOTS 1997 Ibra-
heem and Schmidt introduced a restricted class of natural semantics called L-
attributed natural semantics [13]. The class of L-attributed natural semantics
is restricted to have a left-to-right ordering on the premises of each rule ensur-
ing that a proof search using the rules can be performed as left-to-right tree
traversals. We observe that for the class of L-attributed natural semantics it is
possible to directly extract abstract machines from the natural semantics rules.
The extracted machines are stack based and the stack contains evaluation con-
texts. We formalize this observation as an extraction algorithm and we prove
that the algorithm produces abstract machines that are equivalent to the natu-
ral semantics.

� Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 245–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 M.S. Ager

The class of L-attributed natural semantics is large, containing for instance
semantics for pure functional languages, impure functional languages, and im-
perative languages. The extraction algorithm makes it possible to mechanically
extract abstract machines that are correct by construction from these seman-
tics. We illustrate the extraction algorithm by extracting abstract machines from
L-attributed natural semantics for call-by-value and call-by-name evaluation of
λ-terms. In an extended version of this article we also illustrate the algorithm
by extracting an abstract machine from a natural semantics for call-by-need
evaluation of λ-terms [1].

The rest of this article is organized as follows. We first define the class of
L-attributed natural semantics (Section 2.1). We next define an algorithm for
extracting abstract machines from L-attributed natural semantics (Section 2.2)
and prove its correctness (Section 2.3). We then consider applications of the ex-
traction (Section 3). Finally, we consider limitations of the approach (Section 4),
review related work (Section 5), and conclude (Section 6).

2 From Natural Semantics to Abstract Machines

We consider operational semantics for languages consisting of terms. Terms are
inductively constructed from atomic terms using term constructors. Other than
that, the terms are left unspecified. Values and environments are left unspecified.

– t ∈ Terms,
– op ∈ Term constructors,
– v ∈ Values,
– ρ ∈ Environments,
– σ ∈ Stacks.

We use the notation v : σ for the stack σ with the value v added as the top
element. We use subscripting (ti) and primes (t′) to distinguish different occur-
rences of the meta variables.

2.1 L-Attributed Natural Semantics

In this section we present a restricted class of natural semantics called L-
attributed natural semantics. The definition below is essentially identical to the
definition of Ibraheem and Schmidt [13]. Similar restrictions on the format of
natural semantics rules can be found in Hannan and Miller’s work on deriving ab-
stract machines from operational semantics using proof-theoretic methods [11].

Definition 1 (L-attributed natural semantics). A natural semantics is L-
attributed if it consists of rules of the form:

ρ1 � t′1 ⇓ v1 ρ2 � t′2 ⇓ v2 . . . ρm � t′m ⇓ vm

ρ0 � op(t1, . . . , tn) ⇓ vm+1

(r)

From Natural Semantics to Abstract Machines 247

where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm)

for some partial functions fρi

r , f ti
r , and fval

r with 1 ≤ i ≤ m.

Rules with no premises (m = 0) are called axiom rules and rules with at least
one premise (m > 0) are called non-axiom rules. The number of premises m of
a rule is not related to the number of subterms n of the term in the conclusion
of the rule as illustrated by the following examples:

– A semantics for a language of boolean-valued terms might contain a negation
term constructor ¬t with one subterm. The natural semantics rule for the
evaluation of ¬t would have one premise stating that the subterm t evaluates
to a boolean b. The value in the conclusion of the rule would then be ¬b. In
this case the number of premises equals the number of subterms.

– For a language with if -expressions the number of premises will be
less than the number of subterms in rules for the if term constructor
if t0 then t1 else t2. There will be one premise for the evaluation of the first
subterm t0 and one premise for the evaluation of either t1 or t2.

– A natural semantics for call-by-value evaluation of λ-terms contains a rule
for the application term constructor t0 t1 with two subterms. This rule has
three premises: the evaluation of t0 to a function value, the evaluation of t1
to an argument value, and the evaluation of the application of the function
value to the argument value. In this case the number of premises is greater
than the number of subterms.

Compared to Kahn’s original definition of natural semantics [14], an L-
attributed natural semantics is restricted to working on ternary relations re-
lating a term and an environment to a value. The restriction to ternary relations
is not a serious restriction: environments, terms, and values are left unspeci-
fied, so all three components can have structure. In Kahn’s format, each rule
has an unordered collection of premises and the rule may have conditions. The
L-attributed rules instead have a left-to-right ordering on the premises. This or-
dering is captured in the definition by ensuring that each of the environments ρi,
terms ti, and values vi can be computed from the previous environments, terms,
and values. Furthermore, the rules do not have explicit conditions. Conditions
are encoded as part of the functional dependencies f ti

r , fρi

r , and fval
r between

environments, terms, and values. Therefore, the functions giving the dependen-
cies are partial functions and a rule only applies if the dependency functions are
defined for the given arguments.

Enforcing a left-to-right ordering on the premises of the rules ensures that if
the semantics is deterministic, a proof search using the rules can be performed
as a single left-to-right depth-first traversal. Therefore, if the semantics is deter-
ministic, the proof search can be implemented as a recursively defined evaluator
in a functional language. For the rest of the development in this article we do
not assume that the semantics is deterministic.

248 M.S. Ager

2.2 Abstract-Machine Extraction

We now show how to extract an abstract machine directly from L-attributed
natural semantics rules. The abstract machines we consider are state-transition
systems operating on three types of states:

1. Triples (t, ρ, σ)E consisting of a term, an environment, and a stack. States
of this form correspond to evaluating the term t in the environment ρ and
stack σ.

2. Pairs (σ, v)A consisting of a stack and a value. States of this form correspond
to ‘applying’ the stack σ to the value v.

3. Values v representing the final state of a computation.

Before defining the extraction, we introduce a bit of notation. Given an L-
attributed natural semantics rule of the form

ρ1 � t′1 ⇓ v1 ρ2 � t′2 ⇓ v2 . . . ρm � t′m ⇓ vm

ρ0 � op(t1, . . . , tn) ⇓ vm+1

(r)

where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm)

for 1 ≤ i ≤ m, we define the tuples rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] for each
1 ≤ j ≤ m. The overlining of terms, environments, and values indicates that the
terms, environments, and values are only present in the tuple if they are used
by dependency functions fρk

r or f tk
r for k > j or by fval

r . A term, environment,
or value is used by a later dependency function if the corresponding variable
occurs free in the body of one of these functions. For such a tuple, we define
the application f(t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1, vj) to be the application of
the function f to the elements that are actually present in the tuple and a value
supplying dummy arguments for the elements not present in the tuple. Supplying
dummy arguments makes sense since they will not be used—if they were used,
there would be a value corresponding to the overlined variable in the tuple.

With these notational conventions in place, we are ready to define the ex-
traction of an abstract machine from an L-attributed natural semantics.

Definition 2 (Extracted abstract machine). Given an L-attributed natural
semantics where each rule has a distinct name, define the extracted abstract
machine consisting of the following transition rules:

1. An unload rule to terminate the computation:

(σ0, v)A → v

where σ0 is the empty stack.

From Natural Semantics to Abstract Machines 249

2. For each axiom in the L-attributed natural semantics

ρ � op(t1, . . . , tn) ⇓ v (r)

the rule:

(op(t1, . . . , tn), ρ, σ)E → (σ, v)A

where v = fval
r (t1, . . . , tn, ρ).

3. For each non-axiom rule in the L-attributed natural semantics

ρ1 � t′1 ⇓ v1 ρ2 � t′2 ⇓ v2 . . . ρm � t′m ⇓ vm

ρ0 � op(t1, . . . , tn) ⇓ vm+1

(r)

where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm)

for 1 ≤ i ≤ m, the rules:

– Initial evaluation rule:

(op(t1, . . . , tn), ρ0, σ)E → (t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E

where t′1 = f t1
r (t1, . . . , tn, ρ0) and ρ1 = fρ1

r (t1, . . . , tn, ρ0).

– Stack application rules for 1 ≤ i ≤ m− 1:

(ri[t1, . . . , tn, ρ0, . . . , ρi, v1, . . . , vi−1] : σ, vi)A →
(t′i+1, ρi+1,ri+1[t1, . . . , tn, ρ0, . . . , ρi+1, v1, . . . , vi] : σ)E

where t′i+1 = f
ti+1
r (t1, . . . , tn, ρ0, . . . , ρi, v1, . . . , vi−1, vi)

ρi+1 = f
ρi+1
r (t1, . . . , tn, ρ0, . . . , ρi, v1, . . . , vi−1, vi).

and

– Final stack application rule:

(rm[t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm−1] : σ, vm)A → (σ, vm+1)A

where vm+1 = fval
r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm−1, vm).

The stack introduced by the extraction algorithm is a stack of evaluation con-
texts. The extraction is therefore a new way of constructing evaluation contexts
in the style of Felleisen [9]. (Our previous work on deriving abstract machines
by continuation-passing style transforming and defunctionalizing evaluators pro-
vided another construction of evaluation contexts as defunctionalized continua-
tions [2, 7].)

250 M.S. Ager

2.3 Correctness of the Extraction

The extraction of Definition 2 is partially correct with respect to the original
L-attributed natural semantics. The correctness is partial in the sense that we
only consider finite derivations, i.e., convergent computations.

Theorem 1 (Equivalence). An L-attributed natural semantics and the ex-
tracted abstract machine are equivalent. For all term constructors op, terms
t1, . . . , tn, environments ρ, and values v:

ρ � op(t1, . . . , tn) ⇓ v ⇒ (op(t1, . . . , tn), ρ, σ0)E →∗ v

and

(op(t1, . . . , tn), ρ, σ0)E →k v ⇒ ρ � op(t1, . . . , tn) ⇓ v

for some finite k > 0, where σ0 is the empty stack.

In order to prove Theorem 1 we prove two lemmas that each imply one part
of the equivalence.

Lemma 1. For all term constructors op, terms t1, . . . , tn, environments ρ,
stacks σ, and values v:

ρ � op(t1, . . . , tn) ⇓ v ⇒ (op(t1, . . . , tn), ρ, σ)E →∗ (σ, v)A.

Proof. By induction on the height of the derivation of

ρ � op(t1, . . . , tn) ⇓ v

Assume that the last rule used in the derivation was an axiom of the form

ρ � op(t1, . . . , tn) ⇓ v (r)

then by definition the extracted abstract machine contains the rule

(op(t1, . . . , tn), ρ, σ)E → (σ, v)A

where v = fval
r (t1, . . . , tn, ρ0) which is what we needed to show.

Assume that the last rule used in the derivation was a non-axiom rule of the
form

ρ1 � t′1 ⇓ v1 ρ2 � t′2 ⇓ v2 . . . ρm � t′m ⇓ vm

ρ0 � op(t1, . . . , tn) ⇓ vm+1

(r)

where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm).

From Natural Semantics to Abstract Machines 251

By inversion we know that each of the premises holds and therefore by the
induction hypothesis for all 1 ≤ i ≤ m

(t′i, ρi, σ)E →∗ (σ, vi)A

for all stacks σ. For each 1 ≤ j ≤ m, we prove that

(op(t1, . . . , tn), ρ0, σ)E →∗ (rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] : σ, vj)A

by induction on j.

Base case: j = 1 and by definition of the extracted abstract machine there is
an initial evaluation rule such that

(op(t1, . . . , tn), ρ0, σ)E → (t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E .

By the outer induction hypothesis on the premises of the L-attributed natural
semantics rule, the following derivation exists:

(op(t1, . . . , tn), ρ0, σ)E → (t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E
→∗ (r1[t1, . . . , tn, ρ0, ρ1] : σ, v1)A.

Induction case: j > 1. By the induction hypothesis on j − 1 we can derive

(op(t1, . . . , tn), ρ0, σ)E →∗ (rj−1[t1, . . . , tn, ρ0, . . . , ρj−1, v1, . . . , vj−2] : σ, vj−1)A.

By definition the extracted abstract machine contains the rule

(rj−1[t1, . . . , tn, ρ0, . . . , ρj−1, v1, . . . , vj−2] : σ, vj−1)A →
(t′j , ρj ,rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] : σ)E .

By the outer induction hypothesis on the premises of the L-attributed natural
semantics rule, the following holds:

(t′j , ρj ,rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] : σ)E →∗

(rj [t1, . . . , tn, ρ0, . . . , ρj , v1, . . . , vj−1] : σ, vj)A.

Putting these parts together finishes the subproof.

By what we have just proved with j = m combined with the final stack ap-
plication rule of the extracted abstract machine we have the following derivation

(op(t1, . . . , tn), ρ, σ)E →∗ (rm[t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm−1] : σ, vm)A
→ (σ, vm+1)A

which concludes the proof.

Setting σ = σ0, the empty stack, in Lemma 1 we obtain one direction of
Theorem 1.

252 M.S. Ager

Lemma 2. For all term constructors op, terms t1, . . . , tn, environments ρ,
stacks σ, and values v, if

(op(t1, . . . , tn), ρ, σ)E →k v

for a finite k > 0 then
ρ � op(t1, . . . , tn) ⇓ v′

for some value v′ and there exists a prefix of the abstract machine derivation of
length a < k such that

(op(t1, . . . , tn), ρ, σ)E →a (σ, v′)A.

Proof. By induction on the length k of the derivation.

Base case: k = 2. The minimum length of a derivation of the extracted abstract
machine is two steps, and the derivation has the form:

(op(t1, . . . , tn), ρ, σ0)E → (σ0, v)A → v

where σ0 is the empty stack. The first step of this derivation is only possible
for a rule in the extracted abstract machine that corresponds to an axiom
in the L-attributed natural semantics. Since such a rule exists in the ex-
tracted abstract machine, the following axiom must be a part of the natural
semantics:

ρ � op(t1, . . . , tn) ⇓ v

Setting a = 1 finishes this case.
Induction case: k > 2. Since the number of steps in the abstract-machine deriva-

tion is larger than two, the first rule used in the derivation was extracted
from a natural semantics rule with m ≥ 1 premises:

ρ1 � t′1 ⇓ v1 ρ2 � t′2 ⇓ v2 . . . ρm � t′m ⇓ vm

ρ0 � op(t1, . . . , tn) ⇓ vm+1

(r)

where ρi = fρi

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
t′i = f ti

r (t1, . . . , tn, ρ0, . . . , ρi−1, v1, . . . , vi−1)
vm+1 = fval

r (t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm).
We start by proving that for all 1 ≤ i ≤ m there exists a prefix of the
abstract machine derivation of length ai < k − 1 such that

(op(t1, . . . , tn), ρ, σ)E →ai (ri[t1, . . . , tn, ρ0, . . . , ρi, v1, . . . , vi−1] : σ, vi)A

and
ρi � t′i ⇓ vi

for some value vi. The proof is by induction on i.

From Natural Semantics to Abstract Machines 253

Base case: i = 1. The derivation of length k has the following form

(op(t1, . . . , tn), ρ, σ)E → (t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E →k−1 v

By the outer induction hypothesis on k − 1

ρ1 � t′1 ⇓ v1

and there exists a prefix of the abstract machine derivation of length
p < k − 1 such that

(t′1, ρ1,r1[t1, . . . , tn, ρ0, ρ1] : σ)E →p (r1[t1, . . . , tn, ρ0, ρ1] : σ, v1)A.

Since the stack is non-empty, a final state cannot be reached in less than
two steps, so we know that p < k − 2. Letting a1 = p + 1 finishes this
case.

Inductive case: i = t + 1 for some t ≥ 1. By the induction hypothesis on t

(op(t1, . . . , tn), ρ, σ)E →at (rt[t1, . . . , tn, ρ0, . . . , ρt, v1, . . . , vt−1] : σ, vt)A

for some at < k − 1. By definition, the extracted abstract machine con-
tains the stack application rule

(rt[t1, . . . , tn, ρ0, . . . , ρt, v1, . . . , vt−1] : σ, vt)A →
(t′t+1, ρt+1,rt+1[t1, . . . , tn, ρ0, . . . , ρt+1, v1, . . . , vt] : σ)E .

We have that

(t′t+1, ρt+1,rt+1[t1, . . . , tn, ρ0, . . . , ρt+1, v1, . . . , vt] : σ)E →k−(at+1) v

and by the outer induction hypothesis

ρt+1 � t′t+1 ⇓ vt+1

for some vt+1 and there exists a prefix of the abstract machine derivation
of length p < k − (at + 1) such that

(t′t+1, ρt+1,rt+1[t1, . . . , tn, ρ0, . . . , ρt+1, v1, . . . , vt] : σ)E →p

(rt+1[t1, . . . , tn, ρ0, . . . , ρt+1, v1, . . . , vt] : σ, vt+1)A

Set at+1 = at + p + 1 < k. Since the stack is non-empty in the configu-
ration after at+1 steps, a final state cannot be reached in less than two
steps. Therefore at+1 < k − 1 which finishes the case.

We have just proved that for each 1 ≤ i ≤ m, ρi � t′i ⇓ vi. Therefore, we
can build a derivation of ρ0 � op(t1, . . . , tn) ⇓ v using the natural seman-
tics rule from which the first step in the abstract-machine derivation was
extracted. We have also proved that there exists a prefix of the abstract
machine derivation of the form

(op(t1, . . . , tn), ρ, σ)E →am

(rm[t1, . . . , tn, ρ0, . . . , ρm, v1, . . . , vm−1] : σ, vm)A

254 M.S. Ager

where am < k − 1. Combining this with the final stack application rule
extracted from the natural semantics rule yields the prefix

(op(t1, . . . , tn), ρ, σ)E →am+1 (σ, v)A

of length am + 1 < k which finishes the proof.

Setting σ = σ0, the empty stack, in Lemma 2 we obtain the second direction
of Theorem 1. Therefore, the proof of Theorem 1 is a straightforward corollary
of Lemmas 1 and 2.

3 Applications

In Section 2 we have shown that abstract machines can be extracted directly from
L-attributed natural semantics. In this section we illustrate this extraction.

3.1 Call-by-Value Evaluation of λ-Terms

We first consider the following standard natural semantics for call-by-value eval-
uation of λ-terms. Terms are λ-calculus terms: variables x, abstractions λx.t,
and applications t0 t1. Values are closures 〈x, t, ρ〉, which are triples containing
a variable, a term, and an environment. An environment ρ is a partial function
from variables to values.

ρ � x ⇓ ρ(x) (Var)

ρ � λx.t ⇓ 〈x, t, ρ〉 (Lam)

ρ � t0 ⇓ 〈x, t′, ρ′〉 ρ � t1 ⇓ v′ ρ′[x �→ v′] � t′ ⇓ v

ρ � t0 t1 ⇓ v
(App)

This natural semantics is obviously L-attributed: there is a left-to-right order-
ing of the premises of each rule, and the dependency of later terms, environments,
and values on previous terms, environments and values can be easily specified
as functions. Therefore, we can apply the extraction of Section 2.2 to obtain an
abstract machine. The resulting abstract machine is as follows:

1. Unload rule:
(σ0, v)A → v

2. Axiom rules:
(x, ρ, σ)E → (σ, ρ(x))A

(λx.t, ρ, σ)E → (σ, 〈x, t, ρ〉)A

From Natural Semantics to Abstract Machines 255

3. Non-axiom rules:

(t0 t1, ρ, σ)E → (t0, ρ,App1[t1, ρ] : σ)E

(App1[t1, ρ] : σ, v1)A → (t1, ρ,App2[v1] : σ)E

(App2[〈x, t, ρ′〉] : σ, v2)A → (t, ρ′[x �→ v2],App3[] : σ)E

(App3[] : σ, v)A → (σ, v)A

We identify this machine as a variant of the CEK machine [10]. The only differ-
ence is that the extracted machine pushes an empty evaluation context on the
stack in the function application rule. This evaluation context is removed from
the stack by the last rule and the value is passed unchanged to the next eval-
uation context. Our extracted machine is therefore not properly tail-recursive.
We are currently extending our extraction to identify when the last evaluation
context is empty and the fval

r is the ‘identity function’ that just returns the value
of the last premise of a rule. In this case we could avoid adding an evaluation
context to the stack and not define the final stack application rule, which would
correspond to a tail-call optimization.

3.2 Call-by-Name Evaluation of λ-Terms
The following natural semantics is the standard semantics for call-by-name eval-
uation of λ-terms. As in Section 3.1, terms are λ-calculus terms: variables x,
abstractions λx.t, and applications t0 t1. Values are closures 〈x, t, ρ〉 which are
triples containing a variable, a term, and an environment. An environment ρ
is a partial function from variables to pairs (t, ρ) consisting of a term and an
environment.

ρ(x) = (t, ρ′) ρ′ � t ⇓ v

ρ � x ⇓ v
(Var)

ρ � λx.t ⇓ 〈x, t, ρ〉 (Lam)

ρ � t0 ⇓ 〈x, t, ρ′〉 ρ′[x �→ (t1, ρ)] � t ⇓ v

ρ � t0 t1 ⇓ v
(App)

This natural semantics is L-attributed. It is easy to see that the Lam and
App rules fit the format of L-attributed natural semantics, but the Var rule
deserves a bit of explanation. The rule has one premise and a condition. Putting
it into L-attributed form, we have a rule of the form:

ρ1 � t1 ⇓ v

ρ0 � x ⇓ v
(Var’)

The condition ρ(x) = (t, ρ′) of the Var rule needs to be captured in the func-
tional dependencies f t1

Var’ and fρ1

Var’. The following functions capture the
condition:

256 M.S. Ager

f t1
Var’(x, ρ0) =

{
t if ρ0(x) = (t, ρ′)
undefined otherwise

fρ1

Var’(x, ρ0) =
{
ρ′ if ρ0(x) = (t, ρ′)
undefined otherwise

If the dependency functions are undefined for some arguments, the condition is
not true, and the rule does not apply.

With this explanation, we see that the natural semantics is L-attributed, and
we can apply the extraction of Section 2.2 to obtain an abstract machine. The
resulting abstract machine is as follows:

1. Unload rule:

(σ0, v)A → v

2. Axiom rules:

(λx.t, ρ, σ)E → (σ, 〈x, t, ρ〉)A

3. Non-axiom rules:

(x, ρ, σ)E → (t, ρ′,Var1[] : σ)E if ρ(x) = (t, ρ′)

(Var1[] : σ, v)A → (σ, v)A

(t0 t1, ρ, σ)E → (t0, ρ,App1[t1, ρ] : σ)E

(App1[t, ρ] : σ, 〈x, t′, ρ′〉)A → (t′, ρ′[x �→ (t, ρ)],App2[] : σ)E

(App2[] : σ, v)A → (σ, v)A

As in the call-by-value case, the machine is not properly tail recursive. Both the
Var1 and App2 evaluation contexts are empty, and when given a value they both
pass it directly to the next evaluation context on the stack. We are currently
extending the extraction algorithm to avoid generating these empty evaluation
contexts. Such an extension would correspond to a tail-call optimization.

One might hope to obtain the Krivine machine [6] from the call-by-name
semantics. However, the extraction always gives two transition relations: an eval
transition relation where the left-hand side of the transitions are triples and an
apply transition relation where the left-hand side of the transitions are pairs. The
Krivine machine only has one transition relation, so we cannot directly obtain
it by the extraction of Section 2.2. It is easy to transform the machine obtained
into the Krivine machine, but in its current form the extraction does not give it
directly.

From Natural Semantics to Abstract Machines 257

3.3 Call-by-Need Evaluation of λ-Terms

Launchbury gave a natural semantics for call-by-need evaluation of λ-terms [15]
which Sestoft used as the starting point of his derivation of a lazy abstract
machine [18]. Before deriving an abstract machine, Sestoft changed the renam-
ing behaviour of Launchbury’s natural semantics. Sestoft’s revised version of
Launchbury’s natural semantics is L-attributed and we can therefore apply the
extraction algorithm to obtain an abstract machine. The extracted abstract ma-
chine is essentially Sestoft’s mark 1 machine. Due to lack of space we omit the
details which can be found in an extended version of this article [1].

3.4 Other Applications

In Sections 3.1 and 3.2 we have constructed abstract machines from natural
semantics for call-by-value and call-by-name evaluation of λ-terms. Many natural
semantics fit the format of L-attributed natural semantics. For instance, one can
give an L-attributed natural semantics for λ-calculus extended with exceptions,
state, and combinations of exceptions and state and therefore stack inspection
can be specified with an L-attributed natural semantics [3]. Simple imperative
languages can also be given L-attributed natural semantics. From each of these
natural semantics, the extraction algorithm yields a correct abstract machine.

4 Limitations

The extraction presented in Section 2.2 has three main limitations:

1. The extraction algorithm is restricted to L-attributed natural semantics,
which rules out some natural semantics. For instance, the mini-ML natural
semantics of Kahn is not L-attributed because of cyclic dependencies used
to model recursive bindings1 [14].

2. If an L-attributed natural semantics contains multiple rules for the
same term, the abstract machine resulting from the extraction is non-
deterministic.

3. As explained in Sections 3.1 and 3.2, the extraction algorithm does not give
properly tail-recursive abstract machines.

We are currently working on extending both the class of L-attributed natural
semantics and the extraction algorithm to address these limitations.

Another limitation of the approach is that we only consider partial correct-
ness in the sense that we only consider convergent computations. In order to
address the issue of divergent computations we would have to provide a means

1 Note that this does not mean that recursive bindings cannot be described with an
L-attributed natural semantics. Some natural semantics descriptions of recursive
bindings are L-attributed while others are not. For instance, Sestoft’s L-attributed
version of Launchbury’s natural semantics for lazy evaluation of λ-terms includes
recursive bindings [18].

258 M.S. Ager

of reasoning about divergent computations in the framework of natural seman-
tics. Ibraheem and Schmidt considered divergent computations by applying a
coinductive interpretation of some of the natural semantics rules [13]. We leave
such a generalization for future work.

5 Related Work

Defining natural semantics and abstract machines separately and then proving
that they coincide is standard. Most semantics textbooks describe both kinds
of semantics and show how to relate them [17, 19]. The goal of our work is to
mechanize the extraction of abstract machines from natural semantics so that
the extracted abstract machines are correct by construction.

In previous work, we have observed that defunctionalized, continuation-pas-
sing style evaluators are transition systems, i.e., abstract machines [2, 3, 4, 5, 7].
Starting from an evaluator written in a functional programming language such as
ML [16], we (1) transform the evaluator into continuation-passing style to make
its flow of control explicit, and (2) defunctionalize the continuations to make
them first order, obtaining a stack of evaluation contexts. The result is the ML-
encoding of an abstract machine, and the correctness of the abstract machine
is a corollary of the correctness of the original evaluator and of the program
transformations. The evaluators are direct encodings of natural semantics:

Natural
semantics

ML-encoding

��

Abstract
machine

ML-encoding

��
Eval �� Evalcps �� Evaldefun

The work presented in this article is a different approach to constructing correct
abstract machines from natural-semantics descriptions. We extract a correct
abstract machine directly from the natural semantics rules:

Natural
semantics

���������� Abstract
machine

The idea of characterizing the left-to-right processing natural semantics in
the form of L-attributed natural semantics is due to Ibraheem and Schmidt [13].
The motivation for their definition came from L-attributed grammars. Ibraheem
and Schmidt are concerned with reasoning about divergent computations in the
framework of natural semantics. To this end, they start from L-attributed natural
semantics and generate sets of positive (or convergent) rules and negative (or
divergent) rules. Using an inductive interpretation of the positive rules and a
coinductive interpretation of the negative rules allows them to reason about
divergent computations. In contrast, we only consider convergent computations,
and we extract an abstract machine from an L-attributed natural semantics that
is equivalent to the natural semantics.

From Natural Semantics to Abstract Machines 259

Hannan and Miller derive abstract machines from natural semantics using
proof theory [11]. Their derivation consists in encoding a natural semantics in
a proof-theoretic meta-language and then carrying out transformations at the
meta-language level. In that sense, the work of Hannan and Miller is closely
related to our previous work on deriving abstract machine by using standard
program transformations on an encoding of a natural semantics in a functional
language. One of Hannan and Miller’s derivation steps relies on a left-to-right
ordering of the premises of the natural semantics rules. This restriction seems to
correspond to our present restriction to L-attributed natural semantics. Hannan
and Miller derive abstract machines for call-by-name and call-by-value evalua-
tion of λ-terms. Their starting points, called the N0 and V0 proof systems, are
L-attributed natural semantics. Both natural semantics are very close to the
standard ones presented in Sections 3.1 and 3.2. The difference is that λ-terms
are de Bruijn encoded, environments are lists of values, and there are explicit
rules for looking up an index in an environment. Applying our extraction to these
L-attributes natural semantics yields abstract machines that are very similar to
the machines extracted in Sections 3.1 and 3.2.

Kahn introduced natural semantics and presented natural semantics for vari-
ous aspects of programming languages [14]. For instance, he presented a natural
semantics for mini-ML which is almost L-attributed: removing the letrec con-
struct from the language, the semantics is L-attributed and we can extract an
abstract machine directly. The problem with the letrec construct is that there is
a cyclic dependency between the value of a term and the environment in which
the term is evaluated. The environment in which to evaluate the term can there-
fore not be defined solely as a function of previous terms, environments, and
values and therefore the semantics is not L-attributed.

Sestoft derived a lazy abstract machine from Launchbury’s natural semantics
for call-by-need evaluation of λ-terms [18]. His derivation consists of a number
of intuitive steps and a proof of the correctness of each of the steps. As men-
tioned in Section 3.3 the extraction algorithm presented in this article applies to
the natural semantics and the resulting machine is essentially Sestoft’s mark 1
machine. Sestoft obtained the mark 1 machine by introducing a stack of evalua-
tion contexts and subsequently proving the correctness of the resulting machine.
Our present work shows that such a stack introduction can be applied to a wide
range of natural semantics and proves the correctness of the stack introduction
algorithm once and for all instead of relying on a correctness proof for each
machine. Sestoft only uses the mark 1 machine as a stepping stone, and goes
on to introduce environments (besides the stores already present), closures, and
variable indices. He proves the correctness of the resulting machines.

6 Conclusion

We have presented a simple and mechanical extraction of correct abstract ma-
chines from the class of L-attributed natural semantics introduced by Ibraheem
and Schmidt. We have formalized this extraction as an extraction algorithm

260 M.S. Ager

and proved its correctness. The class of L-attributed natural semantics is large,
containing semantics for call-by-value, call-by-name, and call-by-need functional
languages, as well as imperative languages. For each L-attributed natural se-
mantics the extraction algorithm produces a correct abstract machine.

Acknowledgements. To Olivier Danvy for his encouragement, fruitful discus-
sions, and useful comments. Thanks are also due to Neil Jones, Julia Lawall,
Jan Midtgaard, and the anonymous reviewers for their useful comments.

References

1. Mads Sig Ager. From natural semantics to abstract machines. Technical Report
BRICS RS-04-20, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, October 2004.

2. Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Dale Miller, editor,
Proceedings of the Fifth ACM-SIGPLAN International Conference on Principles
and Practice of Declarative Programming, pages 8–19. ACM Press, 2003.

3. Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages with computa-
tional effects. Technical Report BRICS RS-03-35, DAIMI, Department of Com-
puter Science, University of Aarhus, Aarhus, Denmark, November 2003. Presented
at the 2nd APPSEM II workshop, Talinn, Estonia, April 2004.

4. Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Information Process-
ing Letters, 90(5):223–232, 2004.

5. Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by de-
functionalization. In Maurice Bruynooghe, editor, Logic Based Program Synthesis
and Transformation, 13th International Symposium, LOPSTR 2003, number 3018
in Lecture Notes in Computer Science, pages 143–159, Uppsala, Sweden, August
2003. Springer-Verlag.

6. Pierre Crégut. An abstract machine for the normalization of λ-terms. In Pro-
ceedings of the 1990 ACM conference on LISP and functional programming, pages
333–340. ACM Press, 1990.

7. Olivier Danvy. A rational deconstruction of Landin’s SECD machine. Technical
Report BRICS RS-03-33, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, October 2003.

8. Stephan Diehl, Pieter Hartel, and Peter Sestoft. Abstract machines for program-
ming language implementation. Future Generation Computer Systems, 16:739–751,
2000.

9. Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Con-
trol and State in Imperative Higher-Order Programming Languages. PhD thesis,
Department of Computer Science, Indiana University, Bloomington, Indiana, Au-
gust 1987.

10. Matthias Felleisen and Matthew Flatt. Programming languages and lambda cal-
culi. Unpublished lecture notes.
http://www.ccs.neu.edu/home/matthias/3810-w02/readings.html, 1989-2001.

11. John Hannan and Dale Miller. From operational semantics to abstract machines.
Mathematical Structures in Computer Science, 2(4):415–459, 1992.

From Natural Semantics to Abstract Machines 261

12. Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime systems
within the lambda-sigma calculus. Journal of Functional Programming, 1(1):1–100,
January 1993.

13. Husain Ibraheem and David A. Schmidt. Adapting big-step semantics to small-step
style: Coinductive interpretations and “higher-order” derivations. In Andrew Gor-
don, Andrew Pitts, and Carolyn Talcott, editors, Electronic Notes in Theoretical
Computer Science, volume 10. Elsevier, 2000.

14. Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet,
and Martin Wirsing, editors, Proceedings of the 4th Annual Symposium on The-
oretical Aspects of Computer Science, volume 247 of Lecture Notes in Computer
Science, pages 22–39, Passau, Germany, February 1987. Springer-Verlag.

15. John Launchbury. A natural semantics for lazy evaluation. In Proceedings of
the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 144–154. ACM Press, 1993.

16. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). The MIT Press, 1997.

17. Flemming Nielson and Hanne Riis Nielson. Semantics with Applications. John
Wiley & Sons, 1992.

18. Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Program-
ming, 7(3):231–264, May 1997.

19. Glynn Winskel. The Formal Semantics of Programming Languages. Foundation
of Computing Series. The MIT Press, 1993.

Graph-Based Proof Counting and Enumeration
with Applications for Program

Fragment Synthesis�

J.B. Wells1 and Boris Yakobowski2

1 Heriot-Watt University
http://www.macs.hw.ac.uk/∼jbw/

2 ENS Lyon
http://www.yakobowski.org/

Abstract. For use in earlier approaches to automated module interface
adaptation, we seek a restricted form of program synthesis. Given some
typing assumptions and a desired result type, we wish to automatically
build a number of program fragments of this chosen typing, using func-
tions and values available in the given typing environment. We call this
problem term enumeration. To solve the problem, we use the Curry-
Howard correspondence (propositions-as-types, proofs-as-programs) to
transform it into a proof enumeration problem for an intuitionistic logic
calculus. We formally study proof enumeration and counting in this cal-
culus. We prove that proof counting is solvable and give an algorithm to
solve it. This in turn yields a proof enumeration algorithm.

1 Introduction

1.1 Background and Motivation

Researchers have recently expressed interest [7, 8, 1] in type-directed program
synthesis that outputs terms of a desired goal typing (i.e., environment of type
assumptions and result type) using the values (possibly functions) available in
the type environment. These terms are typically wanted for use in simple glue
code that adapts one module interface to another, overcoming simple interface
differences. There are usually many terms of the goal typing, with many compu-
tational behaviors, and only some will satisfy all the user’s criteria. To find terms
of the goal typing that satisfy all the criteria, it is desirable to systematically
enumerate terms of the typing. The enumerated terms can then be filtered [7, 8],
possibly with user assistance [1], to find the most suitable ones.

Higher-order typed languages (e.g., the ML family) are suitable for this kind
of synthesis. They have expressive type systems that allow specifying precise
goals. They also support easily composing and decomposing functions, tuples,

� Supported by grants: EC FP5/IST/FET IST-2001-33477 “DART”, EPSRC GR/L
41545/01, NSF 0113193 (ITR), Sun Microsystems EDUD-7826-990410-US.

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 262–277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Graph-Based Proof Counting and Enumeration 263

and tagged variants, which can accomplish most of what is needed for the kind
of simple interface adaptation we envision.

1.2 Applications

Both the AxML module adaptation approach [7, 8] and work on signature sub-
typing modulo isomorphisms [1] do whole module adaptation through the use of
higher-order ML functors.

In AxML, term enumeration is mainly needed to fill in unspecified holes in
adaptation code and the main adaptation work is done by other mechanisms.
Term enumeration is useful because an unspecified hole may indicate that the
programmer has not thought things through and they might benefit from seeing
possible alternatives for filling the hole. This will mainly be useful when the
alternatives are small and have somewhat distinct behavior, so a systematic
breadth-first enumeration is expected to be best and enumerating many large
chunks of code would likely be less useful.

In the work on signature subtyping modulo isomorphisms, requirements for
the calculus are quite light: only arrow types (and a subtyping rule) are needed.
Typical examples involve applying a functor to a pre-existing module, in order
to get a module having the same signature as the result of the functor. For
example, we might compose a functor resulting in a map over a given type with
a module containing a generic comparison function.

1.3 Possible Approaches to Term Enumeration

Program synthesis such as term enumeration seeks to find functions with some
desired behavior, which is similar to library retrieval. Closer to our task, some
retrieval systems also compose functions available in the library (see [8] for dis-
cussion), but are not suitable for enumeration. Research on type inhabitation
[2, 11, 15] is related, but is mostly concerned with the theoretical issue of the
number of terms in a typing (mainly whether there is at least 1), and the result-
ing enumeration algorithms are overly inefficient.

The most closely related work is on proof search. Although most of this work
focuses on yes/no answers to theorem proving queries or on building individ-
ual proofs, there has been some work on proof enumeration in various logics
[4, 12, 14]. With constructive logics, we can use the Curry-Howard correspon-
dence to generate terms from the proofs of a formula. We follow this approach
here.

1.4 Overview

We explain in Sec. 2 that the existing calculus LJT is the most suited to our
task and we modify it slightly in Sec. 4 to make the even more suitable LJTEnum.
Next, we present in Sec. 5 a graph representation of proofs and use it to show
solvability of proof counting. In Sec. 6, we present Count, a direct proof count-
ing algorithm, and outline proof enumeration. We then discuss in Sec. 7 the
links between proof counting and term enumeration and add proof terms to
LJTEnum.

264 J.B. Wells and B. Yakobowski

2 Which Calculus for Proof Enumeration?

As already mentioned, proof enumeration is defined as the enumeration of all
the proofs of a formula, as opposed to finding only one proof. Using the Curry-
Howard correspondence, term enumeration can be reduced to proof enumera-
tion; but for that approach to be usable, there must exist some guaranties on
the correspondence. For example, 1-∞ correspondences are unsuitable, because
we might have to examine an infinity of proofs to find different program frag-
ments.

In our case, it is important to find a calculus in which the proofs are in
bijection with normal λ-terms, or equivalently with the set of normal terms
in natural deduction style. Dyckhoff and Pinto [4] provide a survey of var-
ious calculi usable for proof enumeration. They argue that “the appropriate
proof-search calculi are those that have not only the syntax-directed features of
Gentzen-style sequent calculi but also a natural 1–1 correspondence between the
derivations and the real objects of interest, normal natural deductions” and we
agree with their analysis. Unfortunately, calculi having these properties are quite
rare.

For example, a sequent calculus such as Gentzen’s LJ does not meet the
previous criteria. Indeed, due to possible permutations in the proofs, or to the
use of cut rules, two proofs can be associated to the same term. In fact, it
has been long known that 2 proofs in LJ are “the same”, meaning that they
are equivalent to the same normal deduction proof in NJ, if they are inter-
permutable. As a result, we have to consider cut-free and permutation-free
calculi.

Historically, the first calculus having those properties is Herbelin’s LJT [9].
Proofs in LJT are in bijection with the terms of the simply typed λ-calculus.
Later, Herbelin introduced LKT [10], which is based on Gentzen’s classical cal-
culus LK, and Pinto and Dyckhoff [14] proposed two other calculi for systems
with dependent types. Of all these calculi, LJT is better adapted to our purpose,
because the additional features in the three others do not help our task.

The permutation-free property of LJT is achieved by adding in each se-
quent a special place, called a stoup, used to focus the proof. The stoup can
either be empty or filled by one variable. Once the stoup is full, deductions
can only be made based on its content, and it cannot be emptied easily. The
content of the stoup is interpreted as the head variable in the standard λ-
calculus.

All the sequents provable in LJ are provable in LJT. The cut-free version of
LJT is a sequent calculus which enjoys the subformula property, and is syntax-
directed, with few sources of non determinism. LJT also enjoys a cut elimination
theorem [9, 5], so we can restrict ourselves to considering only cut-free proofs.
Finally, as was needed, while the traditional proof terms in LJ correspond to
the simply-typed λ-terms, the proof terms in the cut-free version of LJT are in
bijection with the simply-typed λ-terms in normal form, so all interesting terms
may potentially be found.

Graph-Based Proof Counting and Enumeration 265

3 Mathematical Preliminaries

Given a set E, let Set(E) be the set of all subsets of E. Let a multiset over E
be a function from E to N (the natural numbers); if M is a multiset, we say
that m ∈ M iff M(m) > 0. A multiset M is finite iff {m m ∈M} is finite.
Let MSet(E) be the set of all multisets over E. Let FinMSet(E) be the set of all
finite multisets over E. Multiset literals use the same notation as sets.

Multiset union is defined as usual by (M1 &M2)(x) = M1(x) +M2(x). A
“set-like” multiset union is defined by (M1 ∪M2)(x) = max(M1(x),M2(x)).
Let S range over the names Set and MSet. Let ∪Set = ∪ and ∪MSet = &.

We extend the arithmetic operators + and × and the relation ≤ to N∪ {∞}
using the usual arithmetic rules for members of N, and by letting n +∞ = ∞,
n ×∞ = ∞ if n = 0, 0 ×∞ = 0, and n ≤ ∞. Also, as usual let Σx∈∅v(x) = 0
and let Πx∈∅v(x) = 1 for any function v.

Given a set S, a directed graph G over S is a pair (V,E) where V ⊂ S and
E ⊂ S×S. The elements of V are the vertexes of G, and those of E are the edges
of G. Given a graph G = (V,E), let succG(v) = {v′ ∈ V | (v, v′) ∈ E}. Given
two graphs G1 = (V1, E1) and G2 = (V2, E2), let G1 ∪G2 be (V1 ∪ V2, E1 ∪E2).

We represent mathematical functions as sets of pairs. Let the domain of a
function f be Dom(f) = {x (x, y) ∈ f }. To modify functions, we write f, x : v
for (f \ { (x, y) (x, y) ∈ f }) ∪ {(x, v)}.

4 The Calculus LJTEnum

In this section, we present LJTEnum, a slightly modified version of LJT more suit-
able for term enumeration. The following pseudo-grammars define the syntax.

Q ∈ Propositional-Variables ::= Qi

X,Y ∈ Basic-Propositions ::= Q | Q[A1, . . . , An]
A,B ∈ Formulas ::= X | A1→A2 | A1 ∧A2 | A1 ∨A2

A? ∈ Stoups ::= A | •
Γ ∈ EnvironmentsMSet = FinMSet(Formulas)
s ∈ SequentsMSet ::= Γ ;A? � B

Let also EnvironmentsSet = {Γ ∈ EnvironmentsMSet | ∀A ∈ Formulas, Γ (A) ≤ 1}.
Let SequentsSet be the subset of SequentsMSet such that the environment of each
sequent is in EnvironmentsSet. The symbol • is the empty stoup.

Basic propositions which are not propositional variables are used to encode
parameterized ML types, such as list. For example, if int is encoded as A
and list as B, int list is encoded as B[A]. Note that we do not yet support
polymorphism as in ∀α. α list. Separate functions for handling int list or
bool list must be supplied in the environment.

We present the rules of LJTEnum
S in Fig. 1, which are basically the cut-free

rules of LJT. The rules which add elements in the environment are parameterized
by the operation to use. The two systems LJTEnum

Set and LJTEnum
MSet prove essentially

266 J.B. Wells and B. Yakobowski

Axiom rule Contraction rule

Γ ; X � X
Ax

Γ � {A}; A � B

Γ � {A}; • � B
Cont(A)

Left implication rule Right implication rule
Γ ; • � A Γ ; B � C

Γ ; A→B � C
ImpL

Γ ∪S {A}; • � B

Γ ; • � A→B
ImpR

Left conjunction rule Right conjunction rule
Γ ; Ai � B

Γ ; A1 ∧ A2 � B
AndLi

Γ ; • � A Γ ; • � B

Γ ; • � A ∧ B
AndR

Left disjunction rule Right disjunction rule
Γ ∪S {A}; • � C Γ ∪S {B}; • � C

Γ ; A ∨ B � C
OrL

Γ ; • � Ai

Γ ; • � A1 ∨ A2

OrRi

Fig. 1. Rules of LJTEnum
S (i ∈ {1, 2})

the same judgements, but with possibly different proof trees. This distinction
helps in analyzing the problem of term enumeration and devising our solution.
These points will be developed in Secs. 5 and 6.

5 The Proof Counting Problem

In this section, we formally study the problems of proof counting in LJTEnum. We
interpret sequent resolution as a graph problem. From that we prove that finding
the number of proofs (which is ∞ if there are an infinite number of proofs) of a
sequent is computable.

Let CS(s) be the number of proofs of a sequent s in LJTEnum
S . CMSet(s) is

strongly related to the number of different terms which can be obtained from
the proofs of s; Sec. 7.2 will discuss this. Although apparently less interesting,
CSet(s) is much easier to compute, and can help in finding CMSet(s).

5.1 A Graph Representation of Possible Proofs

We start by defining the notion of applicable rule to a sequent. Let R be the set
of rules R = {Ax, ImpL, ImpR, AndL1

, AndL2
, AndR, OrL, OrR1

,OrR2
,

Cont(A) | A ∈ Formulas}. Let r range over R.
A rule r with conclusion c is applicable to a sequent s iff, viewing the basic

propositions and formulas in r as meta-variables, there is a substitution σ from
these meta-variables to basic propositions or formulas such that σ(c) = s. If the
rule is Cont(A), the formula A must be the one chosen from the environment Γ .
Let RA(s) be the set of rules applicable to a sequent s. Let the valid sequent/rule
pairs be VPS = {(s, r) | s ∈ SequentsS, r ∈ RA(s)}. Let τ range over VPS.

Graph-Based Proof Counting and Enumeration 267

Given a sequent s and a rule r applicable to s via a substitution σ, let
PrS(s, r, i) be the ith premise of σ(r) if r has at least i premises, using ∪S as the
combining operator on the environment.

Definition 5.1. Let GS = (VS,ES) be the directed graph of all possible sequents
and rule uses in LJTEnum

S defined by:

– VS = SequentsS ∪ VPS.

– E1,S = {(s, (s, r)) | s ∈ SequentsS, r ∈ RA(s)}.
– E2,S = {((s, r), s′, n) | n ∈ N, s′ = PrS(s, r, n)}.
– ES = E1,S ∪ E2,S.

The elements of VS which are in SequentsS are called sequent vertexes. Their
outgoing edges (which are in E1,S) go to valid pairs. The elements of VS which
are in VPS are called rule-use vertexes. Their outgoing edges (which are in E2,S)
go to the sequents which are the premises of the rule use. On each outgoing
edge we add a number indicating which premise we are considering (needed only
when there is more than one premise). An example of part of GSet and GMSet is
provided in Fig. 2.

The lowering of a multiset M to a “set-like” multiset M is defined such
that M(x) = min(1,M(x)). Let (Γ ;A? � B) = (Γ ;A? � B), let (s, r) = (s, r),
let (s, τ) = (s, τ), and let (τ, s, i) = (τ , s, i). Given any set W , let (W) =
{ w w ∈W }. For graphs, let (V,E) = (V , E). Note that GMSet = GSet.

A graph g = (V,E) is an S-subgraph iff V ⊆ VS, E ⊆ ES, and s, τ ∈ V
whenever (s, τ) ∈ E or (τ, s, i) ∈ E. An S-subgraph g = (V,E) is valid iff for
every τ = (s, r) ∈ V where r has n premises, (τ,PrS(s, r, i), i) ∈ E for 1 ≤ i ≤ n.

Given a sequent s, let GS(s) be the subgraph of GS containing all the sequent
and rule-use vertexes reachable from s. From a practical viewpoint, GS(s) is
the largest subgraph of GS that a procedure attempting to find proofs of s
should have to consider. It is worth noting that in the general case, GSet(s) and
GMSet(s) may be cyclic graphs (e.g., in Fig. 2). Note that GMSet(s) = GSet(s)
and raise(s,GSet(s)) = GMSet(s).

Lemma 5.2 (Finiteness). GSet(s) is always finite. GMSet(s) can be infinite.

Cont(X→X) �� s1 = (X→X, X; X→X � X)

��
s0 = (X→X, X; • � X)

		

��

ImpL1

2

��
Cont(X) �� s2 = (X→X, X; X � X) �� Ax

Fig. 2. GSet(s0) = GMSet(s0)

268 J.B. Wells and B. Yakobowski

A; • � Y �� Cont(A) �� A; A � Y �� ImpL 2 ��

1
���

��

�����
��

A; Y � Y

��
ImpR

��										
A; • � Y →Y ��

 . . . Ax

A, Y ; • � Y ��

��

Cont(A) �� A, Y ; A � Y �� ImpL 2 ��

1
���

��

�����
��

A, Y ; Y � Y

��
. . . ImpR

	 										

										

										

��

A, Y ; • � Y →Y ��

 . . . Ax

A, Y, Y ; • � Y � �� . . .

��
GSet ∪ GMSet

��
GSet ∪ GMSet

��
GSet

���
GMSet

���
GMSet

Fig. 3. A subgraph of GMSet(A; • � Y) and GSet(A; • � Y) with A = (Y →Y)→Y

Proof. When environments are sets, it is a direct consequence of the fact that
LJTEnum enjoys the subformula property. When environments are multisets, a
sufficient condition for the graph to be infinite is to have in the context a function
taking as an argument a function, or a disjunction. We can then find a derivation
branch in which a formula can be added an arbitrary number of times in the
environment, making the graph infinite. See for example Fig. 3.

5.2 Proof Trees and Their Relationship with the Graph

We now define a structure which captures exactly one proof of a sequent.

Definition 5.3 (Proof trees). Let proof trees be given by this pseudo-grammar:

T ∈ ProofTree ::= τ(T1, . . . , Tn)

Let Seq(s, r) = s and let Seq(τ(T1, . . . , Tn)) = Seq(τ). A particular proof tree
T = (s, r)(T1, . . . , Tn) is an S-proof tree iff (1) s ∈ SequentsS, (2) r ∈ RA(s),
and (3) r has n premises and for 1 ≤ i ≤ n it holds that Ti is an S-proof tree
such that Seq(Ti) = PrS(s, r, i). We henceforth consider only S-proof trees.

We recursively fold an S-proof tree into a S-valid subgraph of GS(s) by:

FoldS((s, r)(T1, . . . , Tn))
= ({s, (s, r)} ∪ {Seq(Ti) 1 ≤ i ≤ n },

{(s, (s, r))} ∪ { ((s, r),Seq(Ti), i) 1 ≤ i ≤ n })
∪ (
⋃

1≤i≤n FoldS(Ti))

To allow lowering MSet-proof trees to Set-proof trees, let τ(T1, . . . , Tn) =
τ (T1 , . . . , Tn). Similarly, a Set-proof tree T can be raised to an MSet-proof

Graph-Based Proof Counting and Enumeration 269

tree T ′ such that Seq(T ′) = Seq(T):

raise(s, (s, r)(T1, . . . , Tn))
= (s, r)(raise(PrMSet(s, r, 1), T1), . . . , raise(PrMSet(s, r, n), Tn))

An S-proof tree T is acyclic iff FoldS(T) is acyclic. Given an acyclic S-proof
tree T , there are only a finite number (possibly more than 1) of S-proof trees T ′

such that FoldS(T ′) = FoldS(T). Given a sequent s for which GS(s) is finite, it
is possible to count the number of acyclic S-proof trees for s, by a simple brute
force enumeration (there are only a finite possible number of them).

An S-proof tree T is cyclic iff FoldS(T) is cyclic. Given a cyclic S-proof tree T ,
there are an infinite number of S-proof trees T ′ such that FoldS(T ′) = FoldS(T).
This follows from the fact that in a cyclic S-proof tree, the proof of some sequent
s depends on a smaller proof of s. Thus, each time we find a proof of s, we can
build a new, bigger (with respect to the height of the proof tree) proof of s, by
unfolding the proof already found.

The raising of an acyclic Set-proof tree is an acyclic MSet-proof tree, and the
lowering of a cyclic MSet-proof tree is a cyclic Set-proof tree. But the lowering
of an acyclic MSet-proof tree can be a cyclic Set-proof tree. Similarly, the raisng
of a cyclic Set-proof tree can be an acyclic MSet-proof tree. Fig. 3 shows part of
an example of the last two points.

5.3 Proof Counting

Lemma 5.4. Let s be a sequent.

– There are the same number of LJTEnum
S proofs of s and S-proof trees for s.

– Suppose GS(s) is finite. If there is no cyclic S-proof tree for s, then the
number of S-proof trees for s is finite; otherwise it is infinite.

– Suppose GS(s) is infinite. If there is no cyclic S-proof tree for s, then the
number of S-proofs of s can be either finite or infinite; otherwise it is infinite.

Lemma 5.5. Given an MSet-sequent s, if there exists an infinity of acyclic
MSet-proof trees for s, then there exists a cyclic Set-proof tree for s .

Proof. We say that a proof tree is of height n iff its longest path goes through
n sequent nodes. Let N be the number of Set-sequent nodes in GSet(s).

We first prove that there exists an MSet-proof tree T for s of height greater
than N . For this, construct a (possibly infinite in branching and number of
nodes) tree BT (“big tree”) by unfolding the graph GMSet(s) starting from s into
a tree, choosing some arbitrary order for the rule-use children of a sequent node,
and making all sequent nodes at depth N (not counting rule-use nodes and with
the root sequent node at depth 1) into leaves and adding no further children
beyond depth N . By construction, all MSet-proof trees of s of height less than
N can be seen to be “embedded” in BT .

Now we observe that BT is finitely branching. For every sequent s′ occurring
in BT , there are a finite number of rule uses that can use other sequents to prove
s′. This is so because R is finite except for rules of the form Cont(A), and at

270 J.B. Wells and B. Yakobowski

most a finite number of those can apply to s′ because the environment Γ of s′

can mention only a finite number of distinct formulas.
Now, by König’s lemma, BT contains a finite number of nodes. As a conse-

quence, there are only a finite number of distinct MSet-proof trees embedded in
BT . Thus T exists and has height m > N .

The Set-proof tree T has the same height as T , so T has at least one path
of length m. Along this path, some Set-sequent nodes must be repeated in
FoldSet(T), and thus T is a cyclic Set-proof tree for s .

Theorem 5.6. Let s ∈ SequentsMSet. Then all of the following statements hold:

– CSet(s) ≤ CMSet(s).

– CSet(s) = ∞ ⇐⇒ CMSet(s) = ∞.

– CSet(s) = 0 ⇐⇒ CMSet(s) = 0.

Proof. The first point is easy: for each Set-proof tree T for s , raise(s, T) is a
MSet-proof tree for s, and raise is injective. This also proves that CSet(s) =
∞⇒ CMSet(s) = ∞ and CMSet(s) = 0 ⇒ CSet(s) = 0.

Next, suppose that CSet(s) = 0. If there was an MSet-proof tree T for s, then
T would be a Set-proof tree for s and we would have CSet(s) = 0. Absurd.

Finally suppose that CMSet(s) = ∞. There are two cases: (1) There is a cyclic
MSet-proof tree T for s. Then T is a cyclic Set-proof tree for s ; (2) There are
no cyclic MSet-proof trees for s. By Lemma 5.4, it means there are an infinite
number of acyclic MSet-proof trees for s. Then by Lemma 5.5, there is a cyclic
Set-proof tree for s . In both cases, by Lemma 5.4, CSet(s) = ∞.

Theorem 5.7. Proof counting is computable for LJTEnum
Set and LJTEnum

MSet .

Proof. The following algorithm CountNaive counts the proofs of a sequent s:

1. Build GSet(s); by Lemma 5.2, it is finite.
2. Search for a cyclic Set-proof tree for s. For this, use the same exhaustive

enumeration as when searching for acyclic ones, but stop as soon as a cyclic
one is found. If a cyclic Set-proof tree is found, then return ∞ = CMSet(s) =
CSet(s) (by Theorem 5.6).

3. Otherwise CMSet(s) and CSet(s) are finite, by Theorem 5.6. If we are searching
for CSet(s), return the number of Set-proof trees for s found by the exhaustive
enumeration in the previous step.

4. Otherwise, we are searching for CMSet(s). Build a restricted (and finite) sub-
graph g of GMSet(s) containing all the foldings of the MSet-proof trees for
s. For this, start at s and do a breadth-first exploration. At each new node
s′ visited, check whether or not it is provable, by finding the number of
proofs of s′ in GSet(s), which is the number of Set-proof trees for s′ (indeed,
GSet(s′) ⊆ GSet(s) and thus cannot contain a cyclic Set-proof tree). If s′ is
unprovable, so is s′ by Theorem 5.6; do not explore its successors. Because
there are no arbitrarily large acyclic MSet-proof trees for s (by Lemma 5.5),
g is finite and this process terminates.

5. Find the number of MSet-proof trees for s whose foldings are in g by ex-
haustive enumeration. By construction, it is CMSet(s).

Graph-Based Proof Counting and Enumeration 271

5.4 The Generality of the Idea

Our approach (using GSet to study GMSet) resembles a static analysis where in-
stead of considering the number of times a formula is present in the environment,
we consider only its presence or absence. That property is interesting because
provability does not depend on duplicate formulas in the environment. In our
case, proof counting is also compatible with our simplifying hypothesis (because
CSet(s) = ∞⇒ CMSet(s) = ∞). This idea is quite general because it is usable in
every calculus in which the environment only increases.

6 An Algorithm for Counting and Enumerating Proofs
in LJTEnum

The algorithm CountNaive could theoretically be used to find the number
of proofs of a sequent. Unfortunately, it is overly inefficient. In this section we
propose Count, a more efficient algorithm to compute CS(s). We also link proof
counting to proof enumeration.

6.1 Underlying Ideas

The main inefficiency of CountNaive is that it does not exploit the inductive
structure of proof trees. Indeed, the number of proofs of a sequent vertex is the
sum of the number of proofs of its successors, and the number of proofs of a
rule-use vertex is the product of the number of proofs of its successors. That
simple definition cannot be trivially computed, because a proof for a sequent
s can use inside itself another proof of s; instead we must explicitly check for
loops. As a consequence, instead of returning CS(s), we return equations verified
by CS(s′), for all the s′ in GS(s).

Consider for example Fig. 2. The equations verified by CS(s0), CS(s1) and
CS(s2) are:

CS(s0) = CS(s1) + CS(s2)
CS(s1) = CS(s0) · CS(s2)
CS(s2) = 1

Afterward, this set of equations must be solved, using standard mathematical
reasoning. But we are only interested in the smallest solutions. Indeed, consider
the system CS(s) = CS(s′),CS(s′) = CS(s). All the solutions CS(s) = CS(s′) = k
are mathematically acceptable, but only the solution CS(s) = CS(s′) = 0 counts
the valid finite proof trees (none in this case).

Formally, these are polynomial equations over N ∪ {∞}. An algorithm for
finding the smallest solution of such systems of polynomial equations has already
been given by Zaionc [15].

6.2 Formal Description of the Algorithm Count

An exploration of a sequent s is complete when all the subgraphs of GS(s) which
could possibly lead to finding a proof have been considered. A complete explo-
ration of GMSet(s) is not always possible, because it can be infinite. For this

272 J.B. Wells and B. Yakobowski

reason, we suppose the existence of a procedure Oracle which in the case of
S = MSet can calculate and return the value of CSet(s) (justified by Theorem 5.6),
although if CSet(s) = ∞ we may deliberately continue exploring GMSet(s) when
enumerating proofs instead of just counting. We can also use the oracle to de-
liberately cut off the search early when we have enumerated enough proofs.

We also suppose the existence of an algorithm Solve which takes as input
a system of polynomials over N ∪ {∞}, and returns as result the least solution
of the system; the result should be a function from the variables used in the
polynomials to their values in the solution.

In order to find CS(s), the algorithm CountSequent presented below first
gathers polynomial equations verified by the sequents present in GS(s) and then
uses Solve to solve the resulting system. In the polynomials, for each sequent
s′ ∈ GS(s) we use the variable cs′ to stand for CS(s′).

CountSequent(S, R, s)
1 if cs ∈ Dom(R) then return R
2 match Oracle(S, s) with
3 | 0 ⇒ return {(cs, 0)} ∪ R
4 | ∞ ⇒ return {(cs,∞)} ∪ R
5 v ←∑

τ∈succGS
(s)

∏
s′∈succGS

(τ) cs′

6 R′ ← {(cs, v)} ∪ R
7 L ← { s′ s′ ∈ succGS

(τ), τ ∈ succGS
(s) }

8 return CountSet(S, R′, L)

CountSet(S, R, L)
1 match L with
2 | ∅ ⇒ return R
3 | {s} ∪ L′ ⇒
4 R′ ← CountSequent(S, R, s)
5 return CountSet(S, R′, L′)

Count(S, s)
1 R ← CountSequent(S, ∅, s)
2 return (Solve(R))(cs)

With a correctly choosen oracle, the algorithm always terminates. Following
the results from Sec. 5, valid oracles would be:

– The function which always answers “No answer” in the Set case; termination
is guaranteed by the finiteness of GS(s) anyway.

– Count called with S = Set in the MSet case. This follows from Theorem 5.6.

Count(S, s) returns exactly CS(s) given a valid oracle as described just above.
Otherwise, if Oracle(S, s) is always a lower bound on CS(s) (or “No answer”),
Count(CS, s) is a lower bound on CS(s) (but termination may fail).

To check the feasibility of our proof counting algorithm, we have built a
completely working implementation. We present in Fig. 5 (p. 277) its output
on an example. After each sequent, the number of proofs of that sequent is
indicated. Unlike the examples presented in Sec. 5, which were hand-made, this
example is automatically1 generated.

Our implementation uses various improvements over the algorithm presented
here. For example, once a count of 0 is found in calculating a product, we do not
explore the other sequents whose counts are the other factors in the product.
Also, instead of calling Solve on the whole set of equations, is is more efficient
to call it on all the strongly connected components of the equations, which can
be found while exploring the graph in CountSequent.

1 With some manual annotations added to get a better graph layout.

Graph-Based Proof Counting and Enumeration 273

6.3 Links Between Proof Counting and Proof Enumeration

Exhaustive proof enumeration in GS could be done by a breadth-first traversal of
GS to find proof trees, but that is inefficient. In particular, some infinite subparts
of GS do not lead to the finding of a proof. Our approach using proof counting is
more efficient. We stop exploring a branch whenever we find out that it contains
0 solutions, and we use the more efficient computation of CSet(s) to help when
computing CMSet(s). Of course, if there are an infinite number of solutions, only
a finite number of them can ever be enumerated.

7 Proof Terms

In this section, we assign proof terms to proofs in LJTEnum. We also discuss the
links between the number of different terms which can be found from the proofs
of a sequent s and CMSet(s).

7.1 The Assignment of Proofs to λ-Expressions

Proofs of LJT are assigned to terms of a calculus called the λ-calculus. Compared
with Herbelin’s [10], our presentation is much shorter because in our cut-free
calculus we only need terms in normal form. We call our restricted version of
the λ-calculus the λ

′
-calculus.

In the λ
′
-calculus, the usual application constructor between terms is trans-

formed into an application constructor between a variable and a list of argu-
ments. So there are two sorts of λ

′
-expressions: λ

′
-terms and lists of arguments,

defined by the following pseudo-grammars where i ∈ {1, 2} and j ∈ N:

x, y ∈ Variables ::= xj

t, u ∈ λ
′
-Terms ::= (x l) | (λx.t) | 〈t1, t2〉 | inji(t)

l ∈ Argument-Lists ::= [] | [〈(x1)t1|(x2)t2〉] | [〈x, y〉t] | [t :: l] | [πi :: l]

As usual, [] is the empty list of arguments, and [t :: l] is the list resulting from
the addition of t at the beginning of l. We abbreviate (x []) by x.

Solely to aid the reader’s understanding of the meaning of λ
′
-terms, we will

relate them to terms of the λ-calculus extended with pairs and tagged variants.
We define the extended λ-terms by this pseudo-grammar where i ∈ {1, 2}:

t̂ ∈ λ-Terms ::= x | λx.t̂ | t̂1 t̂2 | 〈t̂1, t̂2〉 | inji(t̂) | πi(t̂) | let x, y = t̂ in û |
case t̂ of inj1(x) ⇒ t̂1, inj2(x) ⇒ t̂2

Now we translate λ
′
-terms into extended λ-terms:

(x l)∗ = ϕ(x, l) ϕ(t̂, []) = t̂
(λx.t)∗ = λx.t∗ ϕ(t̂, [u :: l]) = ϕ(t̂ u∗, l)
〈t1, t2〉∗ = 〈t∗1, t∗2〉 ϕ(t̂, [πi :: l]) = ϕ(πi(t̂), l)

ϕ(t̂, [〈x, y〉u]) = let x, y = t̂ in û
(inji(t))∗ = inji(t∗) ϕ(t̂, [〈(x1)t1|(x2)|t2〉]) =

case t̂ of inj1(x) ⇒ t∗1, inj2(x) ⇒ t∗2

274 J.B. Wells and B. Yakobowski

Applicative contexts formation rules Terms formation rules

Σ; . : X � [] : X
Ax

Σ, x : A; . : A � l : B

Σ, x : A; • � (x l) : B
Cont(x : A)

Σ; • � u : A Σ; . : B � l : C

Σ; . : A → B � [u :: l] : C
ImpL

Σ, x : A; • � u : B

Σ; • � λx.u : A → B
ImpR

Σ; . : Ai � l : B

Σ; . : A1 ∧ A2 � [πi :: l] : B
AndLi

Σ; • � t : A Σ; • � u : B

Σ; • � 〈t, u〉 : A ∧ B
AndR

Σ, x : A; • � t : C Σ, y : B; • � u : C

Σ; . : A ∨ B � [〈(x)t|(y)u〉] : C
OrL

Σ; • � u : Ai

Σ; • � inji(u) : A1 ∨ A2

OrRi

Fig. 4. Proof terms for the rules of LJTEnum
Term (i ∈ {1, 2})

Let a named environment be a partial function from variables to formulas,
and let Σ range over named-environments.

The rules of LJTEnum with the corresponding proof terms, which we call
LJTEnum

Term , are given in Fig. 4.
Formulas in the goal are associated to a λ

′
-expression. By construction, goals

of rules in which the stoup is empty are λ
′
-terms while those in which the stoup is

full are lists of arguments waiting to be applied. Formulas which are in the stoup
are not associated to a λ

′
-expression, as is indicated by the notation “. : A”.

7.2 Number of Different Proof Terms

Given a sequent s, there are strong ties between CMSet(s) and the number of
different λ-terms up to α-conversion which can be built from the proofs of s.
In fact, the only source of difference is that CMSet(s) does not capture multiple
uses of Cont on propositions which occur multiple times in the context, with
different variable names.

From there, it is easy to devise a proof counting and enumerating algo-
rithm for LJTEnum

Term : in GMSet, just duplicate n times the edge between s and
(s, Cont(A)) if A appears n times in the environment of s. All the results and
theorems applicable to GMSet remain true with that modification. As a result,
proof enumeration is no more difficult in LJTEnum

Term than in LJTEnum.

8 Related Work

Dyckhoff and Pinto propose a confluent rewriting relation ≺ on the structure
of cut-free proofs in LJ [6]. The normal forms of the proofs in LJ w.r.t. to ≺
are in 1-1 correspondence with normal natural deductions in NJ. That solution
would not have been suitable for our purpose however, because we could easily

Graph-Based Proof Counting and Enumeration 275

have ended up finding an important number of proofs in LJ which would all have
corresponded to the same normal proof in NJ.

Howe proposes two mechanisms to efficiently add an history to a sequent
proof in LJT, in order to avoid loops in the proof [12]. One of these mechanisms
has been added to our implementation of Count.

Pinto presents a mechanism to define names for proof-witnesses of formulae
and thus to use Gentzen’s cut-rule in logic programming [13]. Because using the
cut-rule can make some proofs exponentially shorter, it should be possible to
discover terms which are much more efficient from a computational standpoint
than those we can generate using a cut-free calculus. Devising an exhaustive
term enumeration procedure for such a calculus would be an interesting task.

Ben-Yelles [2], Hindley [11], Zaionc [15], Broda and Damas [3] propose various
algorithms to solve the problem of type inhabitation in the simply typed λ-
calculus. Zaionc’s approach is somewhat similar to our own, using fixpoints on
polynomials. Broda and Damas propose a tool for studying inhabitation of simple
types. In all four cases only simple types are considered.

9 Conclusion

9.1 Summary of Contributions

We have presented Count, a proof counting algorithm for the LJTEnum calculus
of intuitionistic logic. The idea is reusable for any calculus in which the envi-
ronment of assumptions only increases (e.g., Gentzen’s LJ). Using Count and
the Curry-Howard correspondence, we have implemented an algorithm which
effectively builds all the possible program fragments of a given typing.

We believe our approach to proof counting and enumeration is the first that
has the following properties. First, we use the easier solution for assumption
sets to build a more efficient solution for multisets, which is closer to our moti-
vating goal of term enumeration. Second, our method works directly on logical-
deduction style sequent derivations as normally used in proof search (i.e., L-
systems with left-introduction rules instead of right-elimination rules), while
earlier approaches instead count λ-terms in normal forms. Third, our method
uses a graph representation of all proofs which seems essential for practicality.

9.2 Future Work

Let us mention some promising ways to extend the expressiveness of our program
fragments synthesizer. First, to better handle ML languages, adding some sup-
port for polymorphism would be useful; but this will break the syntax-directed
property of the calculus, and probably the finiteness of GSet(s).

Ideally, we would also support full algebraic datatypes. We partially achieve
this goal in that the method in this paper handles parametric types (e.g., the
type constructor list as used in the type int list in Standard ML), provided
the environment has functions to build and use them.

Furthermore, the addition of fully general sum types to model inductive
datatypes, as well as of recursion, could also be interesting. This could be done

276 J.B. Wells and B. Yakobowski

for example using recursive propositions. However, a potential pitfall to avoid is
generating “dead code” or predictably non-terminating functions.

Finally, while theoretically sound, the OrL rule generates a huge number of
λ-term which are extensionally equal. It is possible to rule out the less inefficient
ones after they have been produced, but we are also investigating the possibility
of pruning them during an earlier phase of the search.

Acknowledgements. We are grateful to Christian Haack, Daniel Hirschkoff,
and the anonymous referees for their helpful comments on earlier versions.

References

[1] M. V. Aponte, R. Di Cosmo, C. Dubois, B. Yakobowski. Signature subtyping
modulo type isomorphisms. In preparation, 2004.

[2] C.-B. Ben-Yelles. Type-assignment in the lambda-calculus; syntax and semantics.
PhD thesis, Mathematics Dept., University of Wales Swansea, UK, 1979.

[3] S. Broda, L. Damas. On the structure of normal λ-terms having a certain type.
In 7th Workshop on Logic, Language, Information and Computation (WoLLIC
2000), Brazil, 2000.

[4] R. Dyckhoff. Proof search in constructive logics. In Logic Colloquium ’97, 1998.
[5] R. Dyckhoff, L. Pinto. Cut-elimination and a permutation-free sequent calculus

for intuitionistic logic. Studia Logica, 60(1), 1998.
[6] R. Dyckhoff, L. Pinto. Permutability of proofs in intuitionistic sequent calculi.

Theoret. Comput. Sci., 212(1–2), 1999.
[7] C.Haack. Foundations for a tool for the automatic adaptationof software components

based on semantic specifications. PhD thesis, Kansas State University, 2001.
[8] C. Haack, B. Howard, A. Stoughton, J. B. Wells. Fully automatic adaptation of

software components based on semantic specifications. In Algebraic Methodology
& Softw. Tech., 9th Int’l Conf., AMAST 2002, Proc., vol. 2422 of LNCS. Springer-
Verlag, 2002.

[9] H. Herbelin. A λ-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In Proc. Conf. Computer Science Logic, vol. 933 of LNCS. Springer-
Verlag, 1994.

[10] H. Herbelin. A λ-calculus structure isomorphic to Gentzen-style sequent calcu-
lus structure. Available at http://coq.inria.fr/∼herbelin/LAMBDA-BAR-FULL.
dvi.gz, 1994.

[11] J. R. Hindley. Basic Simple Type Theory, vol. 42 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1997.

[12] J. M. Howe. Proof Search Issues In Some Non-Classical Logics. PhD thesis,
University of St Andrews, 1998.

[13] L. Pinto. Cut formulae and logic programming. In R. Dyckhoff, ed., Extensions of
Logic Programming: Proc. of the 4th International Workshop ELP’93. Springer-
Verlag, 1994.

[14] L. Pinto, R. Dyckhoff. Sequent calculi for the normal terms of the λΠ and λΠΣ
calculi. In D. Galmiche, ed., Electronic Notes in Theoretical Computer Science,
vol. 17. Elsevier, 2000.

[15] M. Zaionc. Fixpoint technique for counting terms in typed lambda calculus.
Technical Report 95-20, State University of New York, 1995.

Graph-Based Proof Counting and Enumeration 277

2

1

1

2
2

1

2

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

A
x

A
x

A
x

Im
p
L

Im
p
L

Im
p
L

Im
p
L

Im
p
L

Im
p
L

Im
p
L

Im
p
L

Im
p
L

Im
p
L

Im
p
L

Im
p
L

C
o
n
t
(x

1
→

x
2
)

C
o
n
t
(x

1
→

x
3
)

C
o
n
t
(x

2
)

C
o
n
t
(x

2
→

x
3
)

C
o
n
t
(x

1
)

C
o
n
t
(x

2
→

x
1
)

C
o
n
t
(x

1
→

x
2
)

C
o
n
t
(x

1
→

x
3
)

C
o
n
t
(x

1
→

x
2
)

C
o
n
t
(x

1
→

x
3
)

C
o
n
t
(x

2
)

C
o
n
t
(x

2
→

x
3
)

C
o
n
t
(x

1
)

C
o
n
t
(x

2
→

x
1
)

C
o
n
t
(x

2
)

C
o
n
t
(x

2
→

x
3
)

C
o
n
t
(x

1
)

C
o
n
t
(x

2
→

x
1
)

Σ
; •
�
x

3
:∞

Σ
;x

2
→

x
1
�
x

3
:0

Σ
; •
�
x

2
:∞

Σ
;x

2
→

x
1
�
x

2
:0

Σ
;x

1
�
x

2
:0

Σ
;x

2
→

x
3
�
x

2
:0

Σ
;x

3
�
x

2
:0

Σ
;x

2
�
x

2
:1

Σ
;x

1
→

x
3
�
x

2
:0

Σ
; •
�
x

1
:∞

Σ
;x

2
→

x
1
�
x

1
:∞

Σ
;x

1
�
x

1
:1

Σ
;x

2
→

x
3
�
x

1
:0

Σ
;x

3
�
x

1
:0

Σ
;x

2
�
x

1
:0

Σ
;x

1
→

x
3
�
x

1
:0

Σ
;x

1
→

x
2
�
x

1
:0

Σ
;x

1
→

x
2
�
x

2
:∞

Σ
;x

1
�
x

3
:0

Σ
;x

2
→

x
3
�
x

3
:∞

Σ
;x

3
�
x

3
:1

Σ
;x

2
�
x

3
:0

Σ
;x

1
→

x
3
�
x

3
:∞

Σ
;x

1
→

x
2
�
x

3
:0

Fig. 5. GSet(Σ; • � x3) = GMSet(Σ; • � x3) with Σ = {x1, x2, x1→x2, x2→x1, x1→x3,
x2→x3}

Author Index

Ager, Mads Sig 247
Albert, Elvira 149

Bonakdarpour, Borzoo 36
Bossi, Annalisa 85
Brassel, B. 182
Bueno, F. 19

Colón, Michael.A. 166
Craig, Stephen-John 51

Ebnenasir, Ali 36
Escobar, Santiago 101

Frühwirth, Thom 133

Gallagher, John P. 51

Hanus, M. 182
Henriksen, Kim S. 51
Hermenegildo, Manuel 19, 149
Huch, F. 182

Kameya, Yoshitaka 117
Krishna Rao, M.R.K. 215
Kulkarni, Sandeep S. 36

Lau, Kung-Kiu 198
Leuschel, Michael 51
López-Garćıa, P. 19

Meseguer, José 101
Mesnard, Fred 231
Momigliano, Alberto 198
Moody, Jonathan 69

Ornaghi, Mario 198

Piazza, Carla 85
Puebla, Germán 149

Rossi, Sabina 85

Sato, Taisuke 117
Serebrenik, Alexander 231
Silva, J. 182

Thati, Prasanna 101

Vanhoof Wim 1
Vidal, G. 182

Wells, J.B. 264

Yakobowski, Boris 264

	Frontmatter
	Verification and Analysis
	Searching Semantically Equivalent Code Fragments in Logic Programs
	Determinacy Analysis for Logic Programs Using Mode and Type Information
	Mechanical Verification of Automatic Synthesis of Fault-Tolerant Programs
	Fully Automatic Binding-Time Analysis for Prolog

	Theory and Security
	Logical Mobility and Locality Types
	Unwinding Conditions for Security in Imperative Languages
	Natural Rewriting for General Term Rewriting Systems

	Transformations
	Negation Elimination for Finite PCFGs
	Specialization of Concurrent Guarded Multi-set Transformation Rules
	Efficient Local Unfolding with Ancestor Stacks for Full Prolog

	Program Development
	Schema-Guided Synthesis of Imperative Programs by Constraint Solving
	Run-Time Profiling of Functional Logic Programs
	Constructive Specifications for Compositional Units

	Termination
	Input-Termination of Logic Programs
	On Termination of Binary CLP Programs

	Program Development and Synthesis
	From Natural Semantics to Abstract Machines
	Graph-Based Proof Counting and Enumeration with Applications for Program Fragment Synthesis

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

